
Fast Enumeration of Run-Length-Limited Words
Yulia Medvedeva

Siberian State University of
Telecommunications and Informatics

Novosibirsk, Russia
Email: MJulja@gmail.com

Boris Ryabko
Institute of Computational Technologies of

Siberian Branch of Russian Academy of Science
and Siberian State University of

Telecommunications and Informatics,
Novosibirsk, Russia

Email: boris@ryabko.net

Abstract— An algorithm for enumeration and denumeration
of run-length-limited words (dklr-sequences) is proposed. The
complexity of the algorithm does not exceed O(log3 n log log n),
where n is the length of word, whereas known methods have the
complexity that is not less than c n, c > 0.

I. INTRODUCTION

In many telecommunication and storage systems there is
a restriction on length of sequences of identical letters of
a signal going sequentially. In this context, the problem of
encoding and decoding (enumeration and denumeration) of
run-length-limited words arises; see [1]. For example, one
of such restrictions is the prohibition on two ones to go
sequentially in a word. We say that sequences (or words) of
zeroes and ones are dk-sequences if the length of any series
of ones between zeroes is not less than d and not more than k.
If also the length of a series of ones between the beginning of
sequence and the first zero is not more than l and the length of
a series of ones between the last zero and the end of sequence
is not more than r then such sequence is called dklr-sequence.
(We will notice that usually restrictions are imposed on a series
of zeroes instead of ones, however, it is more convenient to us
for the further statement to use the above-stated definition).
We list as an example all sequences of length n = 5 with
restriction d = 0, k = 1, i. e. such binary sequences of length
5 which do not contain two ones going sequentially: (00000),
(00001), (00010), (00100), (00101), (01000), (01001),
(01010), (10000), (10001), (10010), (10100), (10101).

For the first time the problem of enumerative coding of sets
of run-length-limited words was considered in the paper of
Kautz [2] where the method based on Fibonacci numbers was
proposed. The generalization of this method is the method
of enumeration of dk-sequences by Bahl and Tang [3], and
its generalization, in turn, was proposed in [4]. Kurmaev
developed and generalized the method of Bahl and Tang in
[5], and then suggested a method of enumeration of dklr-
sequences with restrictions on weight of sequences in [6]. It
is important to notice that the time of encoding and decoding
of one letter in all above-mentioned methods is not less than
c n, where c > 0 is a constant, and the memory size grows
polynomially in the length of a word n.

In this paper we propose a fast algorithm of enumeration
of dklr-sequences for which the memory size grows polyno-
mially (as well as in earlier known methods) in the length of

words, whereas the time of encoding and decoding of one
letter is O(log3 n log log n), that is exponentially less than
for previously known methods. (We notice that complexity
of methods is estimated by the memory size (in bits) and
the time of encoding and decoding of one letter measured by
the number of one-bit words operations in realization on the
RAM-machine, which is the model of a ”usual” computer [7]).
Let’s notice also that the offered method uses the algorithm
from [8] which is developed for enumeration of words in the
alphabet {0, 1} with the given length n and number of ones.
Time of coding and decoding of one letter for this method is
equal to O(log3 n log log n).

II. STATEMENT OF THE PROBLEM AND REVIEW OF
KNOWN METHODS

The binary dklr-sequences of length n are considered. It is
necessary to develop the algorithm which put each such word
in correspondence with its number such that all numbers are
presented in binary system by the strings of zeroes and ones
of length dlog2 |M |e, where M is the set of all words with
the given restriction on length of series. This is a problem of
enumeration. In turn, the restoration of word by its number
is called denumeration. Let us consider an example. Let the
length of words be n = 5 and the restriction on the lengths
of series of ones be d = 0, k = 1, i. e. in a word two ones
cannot go sequentially. There are 13 such words, see Table
I. It is required to assign to these words their numbers of
length dlog2 13e = 4. In the first column we write down all
such words and in the second one their numbers are written
in binary form.

We will briefly describe the method from [2] illustrating
all stages on an example of enumeration of the words from
Table I (length of word is n = 5, series of two and more ones
are forbidden). The weight of position is determined for each
position (which is a place of letter in a word numbered from
right to left) using the following rule: for i-th position, i =
1, ..., n the weight of a position is equal to (i+1)-th Fibonacci
number. Remind that sequence of Fibonacci numbers {Fn}
is defined by a recurrent way: F1 = 1, F2 = 1, Fn+1 =
Fn +Fn−1, n = 2, 3, The number of the word is computed
as follows: the weights of positions of letter 1 are summed up.
For example, if n = 5 then the weight F2 = 1 corresponds
to the first position, the weight F3 = 2 corresponds to the

TABLE I
Words with restriction on length of series and their numbers: n = 5, d = 0,

k = 1

Word Number
00000 0000
00001 0001
00010 0010
00100 0011
00101 0100
01000 0101
01001 0110
01010 0111
10000 1000
10001 1001
10010 1010
10100 1011
10101 1100

second position, F4 = 3 corresponds to the third position,
F5 = 5 corresponds to the fourth, and F6 = 8 correspond
to the fifth. It is easy to find a number of a word 01001 as
follows: we add the weights of the first and fourth positions,
because there is a letter 1 in these positions. As result the
number of this word is N = F2 + F5 = 1 + 5 = 6 = 01102.

Algorithms from [3], [4], [5] are developed for a solution
of more general problems: they allow to enumerate sequences
with d ≥ 0, k ≥ d, l ≥ 0, r ≥ 0. In [6] the general
problem of coding dklr-sequences with additional restrictions
on their weight (i.e. on the total number of zeroes and ones
in sequences) is considered. The general scheme of these
algorithms is close to the method from [2] though weights
of positions are calculated by other rules. It is possible to
show, that the time of encoding and decoding of one letter
by these methods is not less than c n, where c > 0 is a
constant. Actually, for encoding it is necessary to look through
each of n positions of encoded word and to sum up numbers
(called the weights of positions and having length n bits),
corresponding to positions of letter 1. A possible quantity of
individual positions is proportional to n, therefore finding the
number of a word of length n requires a computer to sum c n
summands of n bits in length that gives c n operations over
one-bit words per one letter of a word. The memory size grows
polynomially in the length of a word because it is necessary
to store n numbers which are the weights of positions and
have the bit length n. It is important to notice that Fibonacci
numbers and a number of others characteristics are calculated
in advance and are stored in memory as a table which is used
at encoding and decoding.

III. ENUMERATION OF RUN-LENGTH-LIMITED
SEQUENCES

To simplify the description of the proposed method, in this
section we will consider one special case of the enumeration
for dklr-sequences that have restrictions: d = 0, k > 0, l = 0,
r = k. As an example we consider enumeration of words of
length n = 6 with restrictions d = 0, k = r = 1, l = 0. A list

of all such words is: (000000), (000001), (000010),
(000100), (000101), (001000), (001001), (001010),
(010000), (010001), (010010), (010100), (010101).

Any of these words can be represented as a sequence
of special subwords: (0), (01), ..., (0 1...1︸︷︷︸

k

). The representa-

tion should be such that in the whole word the following
letter after any subword is not ”1”. For example, a word
(001001) is a sequence of subwords (0), (01), (0), (01).
Each initial word can be matched to a word of the alphabet
A = {a0, a1, ..., ak}, by replacing subword (0) by a0,
subword (01) by a1 and so on: (0 1...1︸︷︷︸

i

) by ai (i = 0, ..., k).

In our example, the word (001001) corresponds to a word
(a0a1a0a1). Let us define the number of subwords (0 1...1︸︷︷︸

i

)

in the word as Si (i = 0, 1, 2, ..., k). In our example S0 = 2,
S1 = 2. The set of all words of length n with restrictions
d = 0, k > 0, l = 0, r = k can be divided into some
subsets which are defined by condition that two words belong
to one such subset if and only if these two words have
identical collections of S0, S1, S2, ..., Sk. We denote a
subset of words with a collection of S0, S1, S2, ..., Sk by
m(S0, S1, S2, ..., Sk). In our example m(2, 2)={(000101) ,
(001001), (001010), (010001), (010010), (010100)}. It is
easy to see that the subset m(S0, S1, S2, . . . , Sk) consists
of the words which are concatenations of all possible per-
mutations of all subwords in corresponding numbers: S0

subwords (0), S1 subwords (01), S2 subwords (011), ..., Sk

subwords (0 1...1︸︷︷︸
k

). In our example m(2, 2) consists of the

words which are concatenations of S0 = 2 subwords (0) and
S1 = 2 subwords (01). The cardinality of subset of words
defined by a collection (S0, S1, S2, ..., Sk) is calculated by
the formula |m(S0, S1, S2, ..., Sk) | = (S0 + S1 + . . . +
Sk)!/(S0!S1! . . . Sk!). In our example |m(2, 2) | = (2 +
2)!/(2! · 2!) = 6.

For enumeration we need a table which is calculated once
and then is used at encoding and decoding (as well as the
table of Fibonacci numbers and other numbers in methods
from [2], [3], [4], [5], [6]). The table construction consists of
the following: by exhaustive search in lexicographic order we
find all collections (S0, S1, S2, . . . , Sk), such that

0 ≤ S0 ≤ n,

0 ≤ S1 ≤ b(n − S0)/2c,
0 ≤ S2 ≤ b(n − S0 − 2 S1)/3c, (1)

...,

0 ≤ Sk ≤ b(n − S0 − 2 S1 − 3 S2 − ...k Sk−1)/(k + 1)c,

S0 + 2 S1 + ... + (k + 1) Sk = n.

There are all permissible collections, and a set
m(S0, S1, S2, ..., Sk) is nonempty if and only if the
collection (S0, S1, S2, ..., Sk) satisfies all conditions (1). In
our example, permissible collections are ones that satisfy the

TABLE II
The table for the case n = 6, d = 0, k = r = 1, l = 0

S0 S1 ν(S0, S1)
0 3 0
2 2 ν(0, 3) + |m(0, 3)| = 0 + (3 + 0)!/(3! · 0!) = 1
4 1 ν(2, 2) + |m(2, 2)| = 1 + (2 + 2)!/(2! · 2!) = 7
6 0 ν(4, 1) + |m(4, 1)| = 7 + (4 + 1)!/(1! · 4!) = 12

conditions 0 ≤ S0 ≤ 6, 0 ≤ S1 ≤ b6 − S0c, S0 + 2 S1 = 6,
i.e. the following collections: (0, 3), (2, 2), (4, 1), (6, 0).

We build a matrix with k + 1 columns and M rows, where
M is the number of permissible collections. We will denote
sequences of permissible collections (Si) arranged in a lexico-
graphic order by σ1, σ2, ..., σM . The rows of the table corre-
spond to the subsets of words m(σ1), m(σ2), . . . , m(σM)
which are defined above. In a row j (j = 1, ...,M) the
first k elements are Si, i = 0, 1, ..., k. This is σj in explicit
form. The last element of a row, which we denote by ν(σj),
j = 1..., M , is calculated by the recurrent way: ν(σ1) = 0,
ν(σj) = ν(σj−1) + |m(σj−1)|, 1 < j ≤ M .

Let us build the table for our example. We already have
found the permissible collections (S0, S1): (0, 3), (2, 2),
(4, 1), (6, 0). Calculating the cardinalities of the sets for
these collections: |m(S0, S1)| = (S0 + S1)!/(S0!S1!) and
calculating recurrently their ν(σj), we get Table II.

Notice that these calculations are done only once, prior to
the beginning of encoding (and decoding).

Let us describe an numeration order of the words from
the set of dklr-sequences. The first |m(σ1)| numbers (i.e.
numbers 0, 1, . . ., |m(σ1)|− 1) correspond to words from the
set m(σ1). The next |m(σ2)| numbers (i.e. numbers |m(σ1)|,
. . ., |m(σ1)|+ |m(σ2)| − 1) correspond to words from the set
m(σ2), etc.: numbers

∑j−1
i=1 |m(σi)|, . . .,

∑j
i=1 |m(σi)| − 1

correspond to words from the set m(σj) (j = 2, . . ., M).
Inside of each set m(σj) the order of numbers of words

correspond to the lexicographic order of the corresponding
binary words of the alphabet A with order a0 < a1 < ... < ak

defined on it.
In our example words correspond to numbers as it is shown

in Table III.
Let us describe the algorithm of enumeration. We find a

collection (S0, S1, S2, . . ., Sk) for a numerated word and
then find the value of the function ν(S0, S1, . . . , Sk) with
the help of the two-dimensional table constructed above. A
search of the necessary row in the table is carried out by the
binary search in numbers from the first k + 1 columns (it is
possible since collections are arranged in the lexicographic
order). In our example, for the numerated word (010001) we
determine a collection (2, 2), then find ν(2, 2) = 1 by search
in Table II.

We associate the numerated word with a word of an alphabet
A = {a0, a1, . . . , ak} by substitution the subwords (0), (01),
. . ., (0 1 . . . 1︸ ︷︷ ︸

k

), (such that the following letter after any subword

TABLE III
Numbers of sequences for the case n = 6, d = 0, k = r = 1, l = 0

Set Interval Numerated Word Number
m of numbers word of alphabet A

m (0,3) 0 . . . 0 (010101) (a1a1a1) 0
m (1,2) 1 . . . 6 (000101) (a0a0a1a1) 1

(001001) (a0a1a0a0) 2
(001010) (a0a1a1a0) 3
(010001) (a1a0a0a1) 4
(010010) (a1a0a1a0) 5
(010100) (a1a1a0a0) 6

m (4,2) 7 . . . 11 (000001) (a0a0a0a0a1) 7
(000010) (a0a0a0a1a0) 8
(000100) (a0a0a1a0a0) 9
(001000) (a0a1a0a0a0) 10
(010000) (a1a0a0a0a0) 11

m (6,0) 12 . . . 12 (000000) (a0a0a0a0a0a0) 12

is not 1) with the letters a0, a1, . . ., ak, accordingly. In the
example, we associate the word (001001) with (a0 a1 a0 a1).

It is easy to see that in this new word the letter a0 occurs
S0 times, each of letters ai, i = 1, 2, . . ., k occurs Si times.

Then we use a fast method of numeration from [8] to find a
number of this word among all words consisting of the fixed
number of the letters ai, i = 0, 1, . . ., k. (This algorithm is
extensive enough, therefore we do not describe it in our paper
and give the reference to work [8] for the full description).
Let us denote this number by µ. In our example for the word
(a0 a1 a0 a1) this number is µ = 1. (By means of the fast
algorithm from [8], words are enumerated in the lexicographic
order, numbers begin with zero; in our example we can see,
that if we numerate the words consisting of two letters a0 and
two letters a1 in the lexicographic order, word (a0 a0 a1 a1)
has number 0, word (a0 a1 a0 a1) has number 1, the word
(a0 a1 a1 a0) has number 2, word (a1 a0 a0 a1) has number
3). The final number of a word is calculated by the following
way: N = ν(S0, S1, . . . , Sk)+µ. For our word (001001) we
have N = ν(2, 2) + µ = 1 + 1 = 2.

Now let us obtain estimations of time complexity of the
algorithm and the size of memory that we need for its realiza-
tion. Firstly, let us estimate the memory size to store the table.
The number of permissible collections defined by inequalities
(1) and hence the number of rows in the table does not exceed
nk+1. Each row contains k + 1 numbers, the numbers are
not exceeding n, since it is obvious, that S0, S1, S2, . . ., Sk

do not exceed n. Also each row contains only one number
ν(S0, S1, . . . , Sk). This number does not exceed 2n because
ν does not exceed the maximal number which, in turn, is less
than 2n. Thus the memory size needed for the table does not
exceed nk+1 ((k + 1) log n + n) ≤ (k + 2)nk+2 = O(nk+2).

Let us estimate the required time for the algorithm of
enumeration. To find a collection (Si) for a numerated word
it is necessary to look up n letters of the word. Then the
binary search among not more than nk+1 elements with
the key of length (k + 1) log n bits takes place. For it,
we need log(nk+1) (k + 1) log n ≤ (k + 1)2 log2 n time.

Then the algorithm from paper [8] is used. In this paper, it
is proved that its complexity is O(log3 n log log n) for one
coded letter. For finding the final number, it is necessary
to sum up two numbers of lengths not more than n bits.
So, the time required for encoding of one letter is equal to
n+(k+1)2 log2 n+n

n + O(log3 log log n) = O(log3 n log log n).
There is a denominator n in the first summand, because the
time of realization of all steps of the algorithm, except the step
with the use of the algorithm from [8], was calculated for the
numeration of the whole word of length n.

As the result, all these arguments allow to describe the
properties of the algorithm in the form of the following
statement.

Theorem 1: The proposed algorithm requires O(nk+2)
bits of the memory for encoding a word of length n with the
restrictions d = 0, k > 0, l = 0, r = k, and encoding time is
O(log3 n log log n) bit operations per one encoded letter.

Let us describe an algorithm of decoding (denumeration)
of words of length n with considered restriction on lengths
of series (d = 0, k > 0, l = 0, r = k). Word number N
is given, it is required to find a word corresponding to this
number. For example, it is given number N = 2, it is required
to find a corresponding word of length n = 6 with restriction
d = 0, k = 1, l = 0, r = 1. Using Table II, obtained above,
we find a set σj , such that ν(σj) ≤ N < ν(σj+1), (j = 0,
. . ., k − 1) or ν(σj) ≤ N , (j = k). In our case we find
1 = ν(2, 2) ≤ 2 < 7 = ν(4, 1), i.e. the required collection is
(2, 2). The collection is found by the binary search with value
ν as the key. Further, we find µ = N−ν(S0, S1, S2, . . . , Sk).
In our case µ = 2 − 1 = 1. Then using the fast algorithm of
denumeration from [8] we find a word consisting from S0

letters a0, S1 letters a1, S2 letters a2, . . ., Sk letters ak with
the number µ. Finally we replace a0, a1, . . ., ak by (0), (01),
. . ., (0 1 . . . 1︸ ︷︷ ︸

k

). In our example, the word is (a0a1a0a1) and

after replacement we get a desired word (010001).
Let us obtain estimations of a complexity of the algorithm.

The memory size needed for denumeration is the same as
for enumeration because the same table is used. We will
estimate the time needed for the algorithm. On the first step,
for the binary search of the collection (S0, S1, S2, . . . , Sk)
in the table, it is required to make log(nk+1) comparisons
of words of length n, thus the binary search has complexity
log(nk+1) n = (k + 1)n log n bit operations on a word of
length n. Then for a subtraction N−ν(S0, S1, S2, . . . , Sk) it
is required to make one operation over words of length n. Then
the method of denumeration from [8] is used. In this paper
it is proved that the time of decoding is O(log3 n log log n)
per one letter. Thus, the time required for decoding of one
letter is equal to (k+1) n log(n)+n

n + O(log3 n log log n) =
O(log3 n log log n). In the first summand, denominator n has
appeared because for all steps of denumeration, except the step
with the use of the algorithm from [8], the time was calculated
for numeration of the whole word of length n.

This estimation allows us to describe the properties of the
algorithm of decoding.

Theorem 2: The proposed algorithm requires O(nk+2)
bits of the memory for decoding of a word of length n with
restrictions d = 0, k > 0, l = 0, r = k, and decoding time is
equal to O(log3 n log log n) bit operations over one decoded
letter.

IV. CONCLUSION

We proved that the proposed algorithms have high speed for
big block length n. The preliminary estimations show that the
realization time of the proposed method is less than the time
of algorithms from [2], [3], [4], [5] for length of the block
above few tens.

In the paper we considered a partial case of dklr-sequences
that have restrictions: d = 0, k > 0, l = 0, r = k, but this
method can be extend to a general case of arbitrary parameters
d, k, l, r. Similar theorems on complexity of the algorithm can
be proved.

REFERENCES

[1] Immink K.A.S. Codes for Mass Data Storage Systems, Shannon Foun-
dation Publishers, Eindhoven, The Netherlands, 2004.

[2] Kautz W. Fibonacci codes for synchronisation control// IEEE Trans.
Inform. Theory, V. 11, n 2, 1965, pp. 284-292.

[3] Tang D. T., Bahl L. R. Block Codes for a Class of Constrained Noiseless
Channels//Inform. and Control. V. 17, n.5. 1970, pp. 436-461.

[4] Beenker G. F. M., Immink K. A. S. A Generalized Method for Encod-
ing and Decoding Run-Length-Limited Binary Sequences//IEEE Trans.
Inform. Theory, V. 29, n.3, 1983, pp. 751-754.

[5] Kurmaev O. F. Coding of sequences with the limited lengths of se-
ries//Problems of Information Transmission, v. 37, 2001, pp. 35-43.

[6] Kurmaev O. F. Numerical coding of sequences with restrictions on lengths
of series of zero and weight// Problems of Information Transmission, v.
38, 2002, pp. 4-8.

[7] Aho A.V., Hopcroft L.E., Ullman J.D. The Design and Analysis of
Computer Algorithms, Addison-Wesley, 1976.

[8] Ryabko B.Ya. The fast enumeration of combinatorial objects.
//Discrete Math.and Applications, v.10, n2, 1998. (see also
http://arxiv.org/abs/cs.CC/0601069).

