
ISSN 0001-4346, Mathematical Notes, 2014, Vol. 96, No. 1, pp. 43–58. © Pleiades Publishing, Ltd., 2014.
Original Russian Text © Yu. S. Medvedeva, 2014, published in Matematicheskie Zametki, 2014, Vol. 96, No. 1, pp. 51–69.

{FirstPage:x0

Fast Enumeration of Words Generated by Dik Grammars

Yu. S. Medvedeva*

Institute of Computational Technologies, Russian Academy of Sciences, Novosibirsk, Russia
Received August 15, 2013; in final form, December 25, 2013

Abstract—The problem of enumerating and denumerating words generated by Dik grammars
arises in the work of compilers for high-level programming languages and a number of other
applications. The present paper proposes an algorithm for the fast enumeration and denumeration
of words of Dik languages; the complexity of this algorithm per one symbol of enumerated words
is O(log3 n log log n) bit operations, provided that the Schönhage–Strassen multiplication and
division algorithm is used. The well-known methods applied earlier possess complexity O(n) per one
symbol of enumerated words. The construction of the proposed algorithm is based on the Ryabko
method.

DOI: 10.1134/S0001434614070049

Keywords: fast enumeration and denumeration of words, Dik language, Schönhage–Strassen
multiplication and division algorithm, bracketing, Fürer fast multiplication algorithm.

1. INTRODUCTION {ssec1}
The problem of enumerating words from an ordered set W is as follows: to each word from W we

assign its number, i.e., a unique number from the range [0; |W | − 1]. In the denumeration problem, we
search for the solution of the inverse problem: from a number in the range [0; |W | − 1] we must find the
corresponding word from W . Usually we consider the lexicographic order on W , while the number is
expressed in a binary system.

The problems of enumerating combinatorial objects of different form have attracted the attention of
many authors. Among these problems, we note the problem of enumerating words with a given number
of 0’s and 1’s and the problem of enumerating words with a bound on the number of consecutive identical
symbols [1], [2].

In general form, the problem of enumeration and denumeration was considered in Cover’s paper [3],
where a general method for any given set of words was proposed. Ryabko [4] was first to propose a fast
general algorithm of enumerating words of a given set which, for sets of many combinatorial objects, has
a rate exponentially greater than that in the Cover method.

In the present paper, we consider the problem of enumerating and denumerating words of Dik
languages [5], or of “regular” sequence of brackets. Words of the Dik language over a 2m-letter alphabet
are sequences of regularly embedded brackets of m types. As an example, consider all words of length
n = 4 of the Dik language over six letters, i.e., sequences of length 4 of regularly embedded brackets of
three types. There are 18 such words (see the table). To them we assign numbers in binary form of the
length �log2 18� = 5. All such words are placed in the first column, while their numbers in binary form
are written in the second column.

To any word belonging to the Dik language over a 2m-letter alphabet of length 2n the enumeration
algorithm assigns a sequence of 0’s and 1’s, i.e., its number. For example, for the set of words of the Dik
language over the 6-letter alphabet of length 4 located in the order given by the table, for the given word
() { } the algorithm must find its number 00101.

The necessity for the fast enumeration and the denumeration of words of Dik languages arises in the
work of compilers of high-level languages related to the compression of regular sequences of brackets
and the random generation of regular sequences of brackets [6]–[8].

*E-mail: mjulja@gmail.com

43

44 MEDVEDEVA

Table

The word Its number The word Its number

(()) 00000 [] [] 01001

() () 00001 [{ }] 01010

([]) 00010 [] { } 01011

() [] 00011 { () } 01100

({ }) 00100 { } () 01101

() { } 00101 { [] } 01110

[()] 00110 { } [] 01111

[] () 00111 { { } } 10000

[[]] 01000 { } { } 10001

The enumeration algorithm of words of length 2n belonging to Dik languages over a 2m-letter
alphabet based on the Cover method [3] has complexity O(n2) of bit operations per one enumerated
word or O(n) of bit operations per one symbol of enumerated words.

The method for enumerating words of length 2n belonging to Dik languages over a 2m-letter alpha-
bet proposed in this paper is based on the approach from [4] and has complexity O(log nM(n log n)/n)
of bit operations per one symbol of enumerated words, where M(k) is the time needed for the mul-
tiplication or division of words of length k. While the Schönhage–Strassen method [9] has complexity
O(k log k log log k), for multiplication or division of words of length k, the complexity of the method under
consideration is O(log3 n log log n) per one symbol of enumerated words. While the Fürer method [10]
has complexity O(k log k2O(log∗ k)) for multiplication or division of words of length k, the complexity of
the method under consideration is O(log3 n2O(log∗ n)) per one symbol of enumerated words.

2. FAST ENUMERATION ALGORITHM FOR WORDS BELONGING TO DIK LANGUAGES
{ssec2}

Denote by D2m
2n the set of words of the Dik language over a 2m-letter alphabet of length 2n. We must

find the number of the word w from the set D2m
2n among all the words in this set.

Let us describe the enumeration algorithm by giving an example of the search for the number of the
word w = () [] ([]) among the words in the set D4

8, i.e., among all the words of length 8 representing
correct bracketings of two types.

Let us replace the opening brackets of all kinds by 0’s and the closing brackets of all kinds by 1’s. It is
easy to see that the resulting word w′ will be a word of the Dik language over the alphabet {0, 1}, i.e., it
will correspond to a correct bracketing of one kind. In this case, we obtain the word w′ = 01010011.
Denote by S2n the set of all words of n, 0’s and n, 1’s corresponding to correct bracketings. The
cardinality of S2n is equal to the nth Catalan number [11],

|S2n| = Cn = Cn
2n − Cn−1

2n .

(Here and elsewhere, Cm
n denotes the binomial coefficient

(
n
m

)
.) To describe the method, we consider the

auxiliary set An
m of words of length n belonging to the alphabet Am = {a0, a1, . . . , am−1}. Now, to the

enumerated word of the set D2m
2n we assign a word w′′ belonging to the set An

m. To do this, we replace all
the opening brackets of the first type by the symbol a0, all the opening brackets of the second type by the
symbol a1, etc. and eliminate the closing brackets. In this case, the word () [] ([]) will be assigned to
the word w′′ = a0a1a0a1. It can be seen that the order of types of closing brackets is uniquely determined
by the order of types of opening brackets.

MATHEMATICAL NOTES Vol. 96 No. 1 2014

FAST ENUMERATION OF WORDS GENERATED BY DIK GRAMMARS 45

Thus, each word of the set D2m
2n can be uniquely assigned to a pair of words (w′, w′′), one belonging

to the set S2n and the other to the set An
m. And conversely, each pair of words, one from the set S2n and

the other from the set An
m, uniquely determines the corresponding words of the set D2m

2n . Thus,

|D2m
2n | = |An

m| · |S2n| = mn · (Cn
2n − Cn−1

2n).

In the example under consideration,

|D4
8| = |A4

2| · |S8| = 24 · (C4
8 − C3

8) = 24 · (70 − 56) = 224.

To describe the algorithm, we shall use the following ordering of words from the set D2m
2n : first, we put

them in the lexicographic order of the corresponding words of the set An
m and then in the lexicographic

order of the corresponding words of the set S2n.
Denote the number of the word w in the set D2m

2n thus ordered by N(w), the number of the word w′ in
the lexicographically ordered set S2n by N ′(w′), and the number of the word w′′ in the lexicographically
ordered set An

m by N ′′(w′′). Then it is easy to see that

N(w) = N ′′(w′′) · |S2n| + N ′(w′). (2.1) {eq2.1}

It is convenient to begin the description of our method with the description of how to find the
number N ′(w′) by using the Cover method [3]. By this method, the number of a word in the
lexicographically ordered set S2n can be obtained from the formula

N ′(x1x2 . . . x2n) =
2n∑
i=1

∑
χ<xi

NS2n(x1x2 . . . xi−1χ), (2.2) {eq2.2}

where NS2n(x1x2 . . . xi−1χ) is the number of words from S2n, beginning with x1x2 . . . xi−1χ.
Using NS8(01) as an example, let us find this number, i.e., the number of words beginning with 01,

belonging to the set of words of length 8 composed of 0’s and 1’s, and corresponding to correct
bracketings. The words of the set S8 beginning with 01 will be the words composed of four 0’s and
of four 1’s beginning with 01, except those not corresponding to correct bracketings. The number of all
words composed of four 0’s and four 1’s beginning with 01 is easy to find; it is equal to the number of all
words composed of three 0’s and three 1’s, i.e., C3

6 = 20.
The words beginning with 01 composed of four 0’s and four 1’s and not corresponding to correct

bracketings are words of four 0’s and four 1’s for which there exists a j, 2 < j ≤ 8 such that the number
of 1’s in the sequence x1x2 . . . xj exceeds the number of 0’s in this sequence. There exists a one-to-one
correspondence between such words and all words composed of three 0’s and five 1’s and beginning
with 01. Such a correspondence can be defined as follows. For a word not corresponding to correct
bracketings, there exists a j, 2 < j ≤ 8, such that the number of 1’s in the sequence x1x2 . . . xj exceeds
the number of 0’s in this sequence. For each such word, we can find the minimal j. We can see that, for
such a j, the number of 1’s in the sequence x1x2 . . . xj exceeds the number of 0’s by one symbol. In this
word, let us now replace all the symbols after the jth by the opposite ones. We obtain a word composed of
three 0’s and five 1’s, beginning with 01. Since this mapping is bijective, the number of words beginning
with 01, composed of four 0’s and four 1’s, and not corresponding to correct bracketings is equal to the
number of all words beginning with 01 and composed of three 0’s and five 1’s. The number of such words
is the same as the number of words composed of two 0’s and four 1’s, i.e., C2

6 = 15. Thus,

NS8(01) = C3
6 − C2

6 = 5.

In general form,

NS2n(x1x2 . . . xi) = Cn−z
2n−i − Cn−z−1

2n−i

=
(2n − i)!

(n − z)!(n − i + z)!
− (2n − i)!

(n − z − 1)!(n − i + z + 1)!

=
(2n − i)!(2z − i + 1)

(n − z)!(n − i + z + 1)!
, (2.3) {eq2.3}

MATHEMATICAL NOTES Vol. 96 No. 1 2014

46 MEDVEDEVA

where z is the number of 0’s in x1x2 . . . xi, provided that x1x2 . . . xi can be the beginning of the word
corresponding to the correct bracketing of length 2n. If x1x2 . . . xi cannot be the beginning of the words
corresponding to the correct bracketing of length 2n, then, obviously, NS2n(x1 . . . xi) = 0.

We see that NS2n(x1 . . . xi) depends only on 0 < i ≤ 2n, n, and z, the number of 0’s in x1x2 . . . xi

(0 < z ≤ i, 0 < z ≤ n). Thus, for a given n, there exists at most 3n2/2 different numbers NS2n(x1 . . . xi).
In addition, we see that the values of NS2n(x1 . . . xi) do not exceed 22n−i, i.e., are of length not greater
than 2n − i.

We shall use an auxiliary table in which each pair of values of i, 0 < i < 2n, and z, 0 ≤ z ≤ min(i, n),
is assigned the value of

NS2n(x1 . . . xi) =
(2n − i)!(2z − i + 1)

(n − z)!(n − i + z + 1)!
,

identical for all words of length i with z, 0’s. The size of the table is O(n3).
To obtain the number of the word w′, we use (2.2) to find the value of NS2n(x1x2 . . . xi−10) for i such

that xi = 1 and then add them together. For each such i, these values are found as follows. We find the
value of z, equal to the number of 0’s in the word x1 . . . xi−10. Then, using the table, we find the value of
NS2n(x1 . . . xi) corresponding to the pair i, z.

In our example,

N ′(01010011) = NS8(00) + NS8(0100) + NS8(0101000)
+ NS8(01010010) = 9 + 3 + 0 + 0 = 12. (2.4) {eq2.4}

Here the values of NS8(00) and NS8(0100) are taken from the table. For the values of i equal to 2,
4, 6, and 8, we have xi = 1. For i = 2, the word xi−10 is 00, and hence z = 2; therefore, from the
table we find the value of NS8(00) corresponding to the pair (2, 2) and equal to (6! 3)/(2! 5!) = 9. For
i = 4, the word x1 . . . xi−10 is 0100, and hence z = 3; therefore, from the table we find the value of
NS8(0100), corresponding to the pair (4, 3) and equal to (4! 3)/(1! 4!) = 3. The values of NS8(0101000)
and NS8(01010010) are zero, because there are no words in the set S8 beginning with 0101000 or
01010010.

We see that, for such a computation, we need to perform a maximum of n operations of addition of
words of lengths from 1 to 2n. Thus, if the auxiliary table is used, then the complexity of the computation
of the number of a word by the Cover method is O(n2) or O(n) per one symbol of enumerated words.

Let us now pass to the description of the proposed method for finding N ′(w′).
Let us determine the quantities P (xi|x1 . . . xi−1), q(xi|x1 . . . xi−1) for 0 < i ≤ 2n as follows:

P (x1) =
NS2n(x1)
|S2n| , P (xi|x1x2 . . . xi−1) =

NS2n(x1x2 . . . xi)
NS2n(x1x2 . . . xi−1)

,

q(x1) =
∑
χ<x1

P (χ), q(xi|x1 . . . xi−1) =
∑
χ<xi

P (χ|x1 . . . xi−1).
(2.5) {eq2.5}

We can see that, by (2.2),

N ′(x1 . . . x2n) = |S2n|
(
q(x1) + q(x2|x1)P (x1) + q(x3|x1x2)P (x2|x1)P (x1) + · · ·). (2.6) {eq2.6}

The idea of the method is to perform bracketing in this expression in such a way that, in order to compute
the number of a word, the majority of operations is performed over short numbers. Such a bracketing is
as follows:

N ′(x1 . . . x2n) = |S2n|
(
(q(x1) + q(x2|x1)P (x1))

+ ((q(x3|x1x2) + q(x4|x1 . . . x3)P (x3|x1x2))P (x2|x1)P (x1)) + · · ·). (2.7) {eq2.7}

For 0 ≤ a ≤ log(2n), 1 ≤ b ≤ 2n/2a, we determine the quantities ρa
b , λa

b as follows:

ρ0
b = P (xb|x1 . . . xb−1), λ0

b = q(xb|x1 . . . xb−1),

ρa
b = ρa−1

2b−1ρ
a−1
2b , λa

b = λa−1
2b−1 + ρa−1

2b−1λ
a−1
2b .

(2.8) {eq2.8}

MATHEMATICAL NOTES Vol. 96 No. 1 2014

FAST ENUMERATION OF WORDS GENERATED BY DIK GRAMMARS 47

Then

λlog(2n) =
(
(q(x1) + q(x2|x1)P (x1))

+ ((q(x3|x1x2) + q(x4|x1 . . . x3)P (x3|x1x2)) · P (x2|x1)P (x1)) + · · ·).
Combining this with (2.7), we obtain

N ′(x1x2 . . . x2n) = λ
log(2n)
1 |S2n| = λ

log(2n)
1 (Cn

2n − Cn−1
2n). (2.9) {eq2.9}

We can see that, in the case 0 < i ≤ 2n, for xi = 0,

P (xi|x1x2 . . . xi−1) =
(2n − i)!(2z − i + 1)

(n − z)!(n − i + z + 1)!

/ (2n − i + 1)!(2z − i)
(n − z + 1)!(n − i + z + 1)!

=
(2z − i + 1)(n − z + 1)

(2z − i)(2n − i + 1)
(2.10) {eq2.10}

and, for xi = 1,

P (xi|x1x2 . . . xi−1) =
(2n − i)!(2z − i + 1)

(n − z)!(n − i + z + 1)!

/ (2n − i + 1)!(2z − i + 2)
(n − z)!(n − i + z + 2)!

=
(2z − i + 1)(n − i + z + 2)
(2n − i + 1)(2z − i + 2)

. (2.11) {eq2.11}

Let us now pass to computations serving as an illustration of the algorithm. By formulas (2.10) and
(2.11), we obtain

P (x1) = ρ0
1, P (x2|x1) = ρ0

2, . . . , P (x8|x1x2 . . . x7) = ρ0
8,

q(x1) = λ0
1, q(x2) = λ0

2, . . . , q(x8) = λ0
8,

and

P (x1) = 1, P (x2|x1) = P (1|0) =
5
14

, P (x3|x1x2) = P (0|01) =
6
6

,

P (x4|x1x2x3) = P (1|010) =
4
10

, P (x5|x1 . . . x4) = P (0|0101) =
4
4

,

P (x6|x1 . . . x5) = P (0|01010) =
3
6

, P (x7|x1 . . . x6) = P (1|010100) =
6
6

,

P (x8|x1 . . . x7) = P (1|0101001) =
2
2

,

q(x1) = q(0) = 0, q(x2|x1) = q(1|0) =
9
14

, q(x3|x1x2) = q(0|01) = 0,

q(x4|x1x2x3) = q(1|010) =
6
10

, q(x5|x1 . . . x4) = q(0|0101) = 0,

q(x6|x1 . . . x5) = q(0|01010) = 0, q(x7|x1 . . . x6) = q(1|010100) = 0,

q(x8|x1 . . . x7) = q(1|0101001) = 0.

(2.12) {eq2.12}

Accordingly,

ρ0
1 = 1, ρ0

2 =
5
14

, ρ0
3 = 1, ρ0

4 =
2
5

, ρ0
5 = 1, ρ0

6 =
1
2

, ρ0
7 = 1, ρ0

8 = 1,

λ0
1 = 0, λ0

2 =
9
14

, λ0
3 = 0, λ0

4 =
3
5

, λ0
5 = 0, λ0

6 = 0, λ0
7 = 0, λ0

8 = 0.
(2.13) {eq2.13}

Further, from (2.8), we obtain

ρ1
1 =

5
14

, ρ1
2 =

2
5

, ρ1
3 =

1
2

, ρ1
4 = 1, λ1

1 =
9
14

, λ0
2 =

3
5

, λ0
3 = 0, λ0

4 = 0,

ρ2
1 =

1
7

, ρ1
2 =

1
2

, λ2
1 =

6
7

, λ2
2 = 0 , ρ3

1 =
1
14

, λ3
1 =

6
7

.

(2.14) {eq2.14}

MATHEMATICAL NOTES Vol. 96 No. 1 2014

48 MEDVEDEVA

By (2.9), we have

N ′(01010011) = λ3
1 · |S8| = 6/7 · (C4

8 − C3
8) = 12.

Thus, we have obtained N ′(w′), the number of the word 01010011 belonging to the set S8.
The search for the number of a word w′′ in the set An

m involves expressing an m-adic number in
binary form and representing a letter from the alphabet Am by digits of the m-adic system: α0 is the digit
corresponding to 0 in this system, α1 is the digit corresponding to 1, etc. To find the binary representation
of an m-adic word w′′, we use the fast transformation algorithm [4] from the m-adic system to the binary
system, based on the principle “divide and rule”.

Denote the binary representation of the m-adic word x1 . . . xi by (x1 . . . xi)2. At the first step, we find
the binary representations of the digits comprising the word w′′: (α0)2 = 0, (α1)2 = 1, (α2)2 = 10, etc.
Knowing the binary representations of two m-adic words of length i, x1x2 . . . xi and xi+1xi+2 . . . x2i,
we can find the binary representation of the m-adic word x1x2 . . . x2i of length 2i composed of these two
words from the formula

(x1x2 . . . x2i)2 = (x1x2 . . . xi)2 · mi + (xi+1xi+2 . . . x2i)2.

Using this formula, from n binary representations of the letters comprising w′′, we obtain the binary
representations of n/2 subwords of length 2 comprising w′′; further, from these subwords, by the same
formula, we find the binary representation of n/4 subwords of length 4 comprising w′′, and continue
these computations until we obtain the binary representation of w′′, i.e., N ′′(w′′).

Obviously, in our example, there is no need for such a transformation, because the system corre-
sponding to the alphabet A2, is already binary:

N ′′(α0α1α0α1) = (0101)2 = 5.

Using (2.1), we obtain the number of the word ()[] ([]):

N(() [] ([])) = N ′′(α0α1α0α1) · 14 + N ′(01010011) = 5 · 14 + 12 = 82.

The following theorem describes the properties of the proposed method.
{th1}

Theorem 1. The memory capacity required for encoding a word of length 2n of the Dik language
over a 2m-letter alphabet is O(n log n) bits. The encoding rate of a word of length 2n of
the Dik language over a 2m-letter alphabet (i.e., the time needed for encoding one letter) is
O(log nM(n log n)/n) bit operations, where M(k) is the time needed for the multiplication of two
words of length k.

{cor1}
Corollary 1. If the Schönhage–Strassen fast multiplication algorithm with

M(k) = O(k log k log log k)

is used, then the enumeration rate is O(log3 n log log n).
{cor2}

Corollary 2. If the Fürer fast multiplication algorithm with

M(k) = O(k log k2O(log∗ k))

is used, then the enumeration rate is O(log3 n2O(log∗ n)).

The computation time for N(w) consists of the computation time for N ′(w′), the computation time
for N ′′(w′′), and the computation time for N(w) (the latter is obtained from the computed values
of N ′(w′) and N ′′(w′′)).

Let us find the computation time for N ′(w′). It consists of the computation times for ρa
b and λa

b ,
where 0 ≤ a ≤ log(2n), 1 ≤ b ≤ 2n/2a, and the computation time for the product λlog(2n)|S2n|. To
compute ρ0

b and λ0
b , 1 ≤ b ≤ 2n, it is required to compute 2n values of P (xb|x1 . . . xb−1) and 2n values

of P (χ|x1 . . . xb−1), where χ < xb. To compute each of these values from formulas (2.10) or (2.11), we
need to perform one multiplication of numbers of length log(2n) to determine the numerator and one
multiplication of numbers of length log(2n) to determine the denominator.

MATHEMATICAL NOTES Vol. 96 No. 1 2014

FAST ENUMERATION OF WORDS GENERATED BY DIK GRAMMARS 49

Denote by M(n) the time needed for the multiplication of two numbers of length n.
For 1 ≤ b ≤ 2n, the computation time for ρ0

b and λ0
b is 8nM(log(2n)).

It follows from (2.10) and (2.11) that, for 1 ≤ b ≤ 2n, the numerators and the denominators of the
fractions P (xb|x1 . . . xb−1), (and, obviously, of the fractions P (χ|x1 . . . xb−1), χ < xb) do not exceed 4n2.
To record the numerator, just as the denominator of these fractions, at most 2 log n + 2 bits are required.
Therefore, it follows from (2.8) that, for 1 ≤ b ≤ 2n, in order to record the fractions λ0

b and ρ0
b , it suffices

2 log n + 2 bits for the numerator and the same amount for the denominator. It follows from (2.8) that,
for 1 ≤ b ≤ 2n, the computation of the quantities ρ1

b or λ1
b requires, respectively, two or three operations

of multiplication of numbers whose length is at most 2 log n + 2 bits and the total number of operations
of multiplication needed to compute all the λ1

b , ρ1
b for 1 ≤ b ≤ n is 5n. To compute λ1

b , it suffices to apply
the usual equality a/b + c/d = (ad + bc)/(bd) requiring three multiplications. This yields fractions that
require at most 2(2 log n + 2) bits for recording the numerator and the same amount for the denominator.
Similarly, for 1 ≤ b ≤ n/2, the computation of ρ2

b and λ2
b requires 5n/2 operations of multiplication over

numbers of length 2 · 2 log n + 4 bits, and so on; for 1 ≤ a ≤ log(2n), 1 ≤ b ≤ 2n/2a, the computation
of ρa

b and λa
b requires 5n/2a−1 operations of multiplication over numbers of length 2a−1(2 log n + 2) bits.

Therefore, for 1 ≤ a ≤ log(2n), 1 ≤ b ≤ 2n/2a, the total computation time for λa
b and ρa

b can be
expressed as

5nM(2 log n + 2) + · · · + 5n
2a−1

M(2a−1(2 log n + 2)) + · · · + 5M(n(2 log n + 2)). (2.15) {eq2.15}

Denote by M∗(n) the time needed for the multiplication of two numbers of length n divided by the length
of these numbers: M∗(n) = M(n)/n. Then by (2.15), the total computation time for λa

b and ρa
b is

10n log nM∗(2 log n) + 10n log nM∗(4 log n) + · · · + 10n log nM∗(2n log n). (2.16) {eq2.16}

In this sum, there are log(2n) summands and each of them is not greater than 10n log nM∗(2n log n).
Thus, the computation time for the fractions λa

b and ρa
b is

O((log n + 1)10n log nM∗(n2 log n)) = O

(
n log2 n

M(n2 log n)
n(2 log n)

)
= O(log nM(n2 log n)). (2.17) {eq2.17}

The computation time for the product λlog(2n)|S2n| consists of the computation time for the product of
the numerator of λlog(2n) and |S2n| and the computation time for the division of the resulting number
by the denominator of λlog(2n). The number of symbols required for recording the numerator of λlog(2n)

does not exceed 2n · 2 log n. The number of symbols required for recording |S2n|, does not exceed 2n,
because the number of binary sequences of length 2n corresponding to the correct bracketing of (|S2n|)
is less than the number of all binary sequences of length 2n. Thus, the time needed for the multiplication
of the numerator of λlog(2n) and |S2n| is M(2n 2 log n). The length of the resulting number does not
exceed 4n(2 log n). The length of the denominator of λlog(2n) does not exceed 2n 2 log n. Since the time
needed for the division of two numbers of length a is equal to the time needed for the multiplication of
two numbers of length a, it follows from [7] that the time needed for the division of the resulting number
by the denominator of λlog(2n) is M(4n 2 log n).

Thus, the computation time for N ′(w′) is equal to the sum of the computation time for ρ0
b and λ0

b for
1 ≤ b ≤ 2n, i.e., 8nM(log(2n)), of the computation time for λa

b and ρa
b for

1 ≤ a ≤ log(2n), 1 ≤ b ≤ 2n
2a

,

i.e., O(log nM(n 2 log n)), and of the computation time for λlog(2n)|S2n|, i.e.,

M(2n 2 log n) + M(4n 2 log n),

giving

8nM(log(2n)) + O(log nM(n 2 log n)) + M(2n 2 log n) + M(4n 2 log n)
= 8n log(2n)M∗(log(2n)) + O(log n n(2 log n)M∗(n 2 log n)) + O(M(4n 2 log n)

MATHEMATICAL NOTES Vol. 96 No. 1 2014

50 MEDVEDEVA

= O(8n log(2n)M∗(log(2n)) + log n n(2 log n)M∗(n 2 log n) + M(4n 2 log n)
= O(n log n(2 log n)M∗(4n 2 log n)) = O(log nM(n log n)). (2.18) {eq2.18}

Let us now determine the computation time for N ′′(w′′). The computation of each of the elements
(x1x2)2, . . . , (xn−1xn)2 requires one multiplication of the numbers m and xi for i equal to 1, 3, . . . , n− 1
and one addition of the resulting products and the numbers xi+1. The number of symbols required
for recording the number m, just as for recording xi, does not exceed log m. Therefore, the time
needed for their multiplication is M(log m) = O(1). The length of the resulting product does not
exceed 2 log m. The length xi+1 does not exceed log m. Therefore, the time needed for their addition
does not exceed 2 log m = O(1). Thus, the computation of all elements (x1x2)2, . . . , (xn−1xn)2
requires n operations taking the time O(1). The total time is O(n). Similarly, the computation of
(x1x2x3x4)2, . . . , (xn−3xn−2xn−1xn)2 requires n/4 operations taking the time M(2 log m) = O(1),
and n/4 operations taking the time 4 log m = O(1). The total time is O(n), etc.; the computa-
tion (x1 . . . x2k)2, . . . , (xn−2k−1 . . . xn)2 for 1 ≤ k ≤ log n requires n/2k operations taking the time
M(2k−1 log m, and n/2k operations, taking the time 2k log m. The total time is

n

2k
· M(2k−1 log m) + 2k log m.

The total computation time for N ′′(w′′) is

n

2
(M(log m) + 2 log m) +

n

4
(M(2 log m) + 4 log m) + · · · +

(
M

(
n

2
log m

)
+ n log m

)

=
n

2
· (log mM∗(log m) + 2 log m) +

n

4
· (2 log mM∗(2 log m) + 4 log m) + . . .

· · · +
(

n

2
log mM∗

(
n

2
log m

)
+ n log m

)
. (2.19) {eq2.19}

This expression contains log n summands, each of which does not exceed

n

2
log mM∗

(
n

2
log m

)
+ n log m;

thus, the time needed to compute N ′′(w′′), is

log n

(
n

2
log mM∗

(
n

2
log m

)
+ n log m

)
= O(log nM(n)). (2.20) {eq2.20}

Let us determine the time needed to compute N(w) from N ′(w′) and N ′′(w′′) from (2.1). The number
of symbols required for recording N ′′(w′′) is at most n log m. The number of symbols required for
recording the number |S2n|, is at most 2n. The multiplication of these numbers requires the time
M(n log m) = O(M(n)). The number of symbols required for recording the resulting number is at most
n log m. The number of symbols required for recording N ′(w′) is at most 2n. The addition of the resulting
number and N ′(w′) requires the time n log m = O(n). Thus, the total time needed to compute N(w)
from N ′(w′) and N ′′(w′′), is

O(M(n)) + O(n) = O(M(n)). (2.21) {eq2.21}

It follows from (2.18), (2.20), (2.21) that the total time needed for determining the number w is

O(log nM(n log n)) + O(log nM(n)) + O(M(n)) = O(log nM(n log n)).

The complexity of the computation of the number of the word w per one symbol is O(log n/nM(n log n)).

Let us estimate the memory capacity needed for the enumeration. To determine N ′(w′) in the process
of the computation of λa

b and ρa
b for 1 ≤ a ≤ log(2n), 1 ≤ b ≤ 2n/2a, we use only the quantities λa−1

b and
ρa−1

b , 1 < a ≤ log n, 1 ≤ b ≤ 2n/2a. Therefore, for the enumeration, it suffices to have memory capacity
for storing the collections of λa

b , ρa
b , 1 ≤ a ≤ log(2n), 1 ≤ b ≤ 2n/2a, and λa+1

b , ρa+1
b , 1 < a ≤ log n,

MATHEMATICAL NOTES Vol. 96 No. 1 2014

FAST ENUMERATION OF WORDS GENERATED BY DIK GRAMMARS 51

1 ≤ b ≤ 2n/2a. The length of each fraction λa
b and ρa

b is at most 2a+1(2 log n + 2). Hence the memory
capacity needed to determine the number of the word w′ is at most O(n log n).

To determine N ′′(w′′) in computing

(x1 . . . x2k)2, . . . , (xn−2k+1 . . . xn)2, 1 ≤ k ≤ log n,

only the quantities (x1 . . . x2k−1)2, . . . , (xn−2k−1+1 . . . xn)2 are used. Therefore, for the enumeration, it
suffices to have memory capacity for storing the collections

(x1 . . . x2k)2, . . . , (xn−2k+1 . . . xn)2, (x1 . . . x2i−1)2, . . . , (xn−2k−1+1 . . . xn)2, 1 ≤ k ≤ log n.

The length of each number

(x1 . . . x2k)2, . . . , (xn−2k+1 . . . xn)2

is 2k log m; there are n/2k such numbers in all. The length of each number

(x1 . . . x2k−1)2, . . . , (xn−2k−1+1 . . . xn)2

is 2k−1 log m; there are n/2k−1 such numbers in all. Hence the memory capacity required to com-
pute N ′′(w′′) is at most O(n log m) = O(n).

The total memory capacity needed to compute N(w) is O(n log n) + O(n) = O(n log n). The
theorem is proved.

3. THE DENUMERATION ALGORITHM {ssec3}
Let us describe the decoding algorithm. As an example, we consider the search for a word from the

set D4
8, provided its number N = 82 is known.

From the number N , we find N ′(w′) and N ′′(w′′):

N ′(w′) = N mod |S|, N ′′(w′′) = �N/|S|�.

In our example, N ′(w′) = 82mod 14 = 12 and N ′′(w′′) = �82/14� = 5.
Given N ′(w′), let us find the word w′ from the set S2n.
To describe the algorithm, we introduce auxiliary functions for the upper and lower bounds for λa

b . Let
p/q be a rational number expressed as the pair of positive integers p, q, p ≤ q, and let t > 1 be an integer.
Set l = �log q�. Let (qlql−1 . . . q0) and (plpl−1 . . . p0) be the binary representations of the numbers q
and p. Then we define φ+

t (p/q) and φ−
t (p/q) as follows:

φ+
t

(
p

q

)
=

∑l
i=l−t pi2i + 2l−t

∑l
i=l−t qi2i

, φ−
t

(
p

q

)
=

∑l
i=l−t pi2i

∑l
i=l−t qi2i + 2l−t

. (3.1) {eq3.1}

If l − t < 0, then we multiply the numerator and the denominator of the resulting fraction by 2−(l−t).
For example,

φ+
3

(
9
17

)
=

5
8

, φ−
3

(
9
17

)
=

4
9

.

Let qmax be equal to the maximal denominator of the numbers

NS2n(x1 . . . xi+1)
NS2n(x1 . . . xi)

, x1 . . . x2n ∈ S2n, 1 ≤ i ≤ 2n − 1.

It follows from (2.10) and (2.11) that

qmax = 4n2. (3.2) {eq3.2}

From (2.8), we find that the denominators of the rational fractions λa
b and ρa

b do not exceed q2a

max for all
1 ≤ b ≤ 2n/2a and, therefore,

ρa
b ≥ 1

q2a

max

. (3.3) {eq3.3}

MATHEMATICAL NOTES Vol. 96 No. 1 2014

52 MEDVEDEVA

Given the number N ′(w′), the first step in the search for the word w′ from the set S2n consists in
computing the estimates λ+(log(2n), 1), λ−(log(2n), 1) using the formulas

λ+(log(2n), 1) = φ+
8n�log qmax�+4

(
N ′(w′)
|S2n|

)
,

λ−(log(2n), 1) = φ−
8n�log qmax�+4

(
N ′(w′)
|S2n|

)
.

(3.4) {eq3.4}

Given the prefix x1 . . . x2a(b−1) and estimates λ+(a, b), λ−(a, b) (0 < a ≤ log(2n), 1 ≤ b ≤ 2n/2a),
let us describe a recursive procedure for finding the subword x2a(b−1)+1 . . . x2ab and the quantities λa

b ,
ρa

b or a pair of words such that one of them is x2a(b−1)+1 . . . x2ab, and the corresponding pair of the
conjectured values of λa

b and ρa
b . Further, if b = 2n/2a, then by this procedure, we can uniquely determine

the subword x2n−2a+1 . . . x2n. (In this case, we do not need to find λa
b , ρa

b , because, given the prefix
x1 . . . x2n−2a and the subword x2n−2a+1 . . . x2n, we can find the unknown word x1 . . . x2n.)

Let us compute the estimates λ+(a − 1, 2b − 1), λ−(a − 1, 2b − 1) using the formulas

λ+(a − 1, 2b − 1) = φ+
2a+1�log qmax�+4

(λ+(a, b)),

λ−(a − 1, 2b − 1) = φ−
2a+1�log qmax�+4

(λ−(a, b)).
(3.5) {eq3.5}

If a − 1 > 0, then, given the prefix x1 . . . x2a−1(2b−2) and these estimates, we carry out the recursive

procedure for finding the subword x2a−1(2b−2)+1 . . . x2a−1(2b−1) and the quantities λa−1
2b−1, ρa−1

2b−1 or
the pair of words, one of which is x2a−1(2b−2)+1 . . . x2a−1(2b−1), and the corresponding pair of the

conjectured values of λa−1
2b−1, ρa−1

2b−1. Denote the lexicographically smaller word from the pair of words
by x′

2a−1(2b−2)+1 . . . x′
2a−1(2b−1), the greater word by x′′

2a−12(b−2)+1 . . . x′′
2a−1(2b−1), and the corresponding

conjectured values of λa−1
2b−1, ρa−1

2b−1 by λ′a−1
2b−1, λ′′a−1

2b−1 , ρ′a−1
2b−1, and ρ′′a−1

2b−1 .

If a − 1 = 0, then we obtain letters χ, χ ∈ {0, 1}, for which the following conditions simultaneously
hold:

P (χ|x1 . . . x2b−2) > 0,

λ+(0, 2b − 1) ≥ q(χ|x1 . . . x2b−2),

λ−(0, 2b − 1) < q(χ|x1 . . . x2b−2) + P (χ|x1 . . . x2b−2).

(3.6) {eq3.6}

If there exists one such χ, then x2b−1 = χ. If there exists two such χ’s, we assume that x′
2b−1 is equal to

the smallest of the two, i.e., zero, while x′′
2b−1 is taken as the greatest of the two such χ’s, i.e., as 1. In

the first case, we compute the values of λ0
2b−1 and ρ0

2b−1 from formulas (2.8), while, in the second case,
we compute the values of λ′0

2b−1, ρ′02b−1, λ′′0
2b−1, and ρ′′02b−1 using the following formulas:

λ′0
2b−1 = q(x′

2b−1|x1 . . . x2b−2), λ′′0
2b−1 = q(x′′

2b−1|x1 . . . x2b−2),

ρ′02b−1 = P (x′
2b−1|x1 . . . x2b−2), ρ′′02b−1 = P (x′′

2b−1|x1 . . . x2b−2).
(3.7) {eq3.7}

Thus, at this stage of the procedure, we obtain the subword x1 . . . x2a−1(2b−2) and the values of λa−1
2b−1

and ρa−1
2b−1 or the words x′

1 . . . x′
2a−1(2b−2), x′′

1 . . . x′′
2a−1(2b−2) and the values of λ′a−1

2b−1, ρ′a−1
2b−1, λ′′a−1

2b−1 , and

ρ′′a−1
2b−1 . In the second case, we verify whether the following inequalities hold:

λ′a−1
2b−1 + ρ′a−1

2b−1 ≤ λ−(a, b),

λ′′a−1
2b−1 > λ+(a, b).

(3.8) {eq3.8}

If the first inequality holds, then

x1 . . . x2a−1(2b−2) = x′′
1 . . . x′′

2a−1(2b−2), λa−1
2b−1 = λ′′a−1

2b−1 , ρa−1
2b−1 = ρ′′a−1

2b−1 .

MATHEMATICAL NOTES Vol. 96 No. 1 2014

FAST ENUMERATION OF WORDS GENERATED BY DIK GRAMMARS 53

If the second inequality holds, then

x1 . . . x2a−1(2b−2) = x′
1 . . . x′

2a−1(2b−2), λa−1
2b−1 = λ′a−1

2b−1, ρa−1
2b−1 = ρ′a−1

2b−1.

If, at this stage of computations, the exact values of λa−1
2b−1 and ρa−1

2b−1 are known (from the use of the
comparisons (3.8) or without them), we compute the estimates λ+(a − 1, 2b), λ−(a − 1, 2b) using the
formulas

λ+(a − 1, 2b) = φ+
2a+1�log qmax�+4

(
λ+(a, b) − λa−1

2b−1

ρa−1
2b−1

)
,

λ−(a − 1, 2b) = φ−
2a+1�log qmax�+4

(
λ−(a, b) − λa−1

2b−1

ρa−1
2b−1

)
,

(3.9) {eq3.9}

Let us apply to them the recursive procedure if a− 1 > 0, obtaining the subword x2a−1(2b−1)+1 . . . x2a−12b

and the values of λa−1
2b , ρa−1

2b (or, in the case b = 2n/2a, only the subword x2a−1(2b−1)+1 . . . x2a−12b) or
a pair of subwords such that one word from this pair is x2a−1(2b−1)+1 . . . x2a−12b, and the corresponding

pairs of the conjectured values of λa−1
2b , ρa−1

2b . But if a− 1 = 0, then the resulting estimates are subjected
to actions similar to those performed with the estimates λ0

2b−1, ρ0
2b−1; as a result, we obtain x2b, λ0

2b, ρ0
2b

or the pairs of letters x′
2b and x′′

2b, (x′
2b < x′′

2b) and the pairs of values of λ′0
2b, ρ′02b, λ′′0

2b , ρ′′02b . But if b = 2n/2a,
i.e., a = 0, b = 2n and we have found the letters x′

2n and x′′
2n, then this implies that x2n = x′′

2n.

If neither of the inequalities (3.8) holds, then, for b = 2n/2a, this means that x2a(b−1)+1 . . . x2a−1 has
been obtained and is equal to x′′

2a(b−1)+1 . . . x′′
2a−1 . We then successively find the letters

xi, 2a−1(2b − 1) + 1 ≤ i ≤ 2a−12b,

such that

q(xi|x1 . . . xi−1) = 0,
P (xi|x1 . . . xi−1) > 0.

(3.10) {eq3.10}

If neither of the inequalities (3.8) holds and b �= 2n/2a, then we successively obtain the letters

x′
i, 2a−1(2b − 1) + 1 ≤ i ≤ 2a−12b

such that

q(x′
i|x1 . . . x2a(b−1)x

′
2a(b−1)+1 . . . x′

i−1) + P (x′
i|x1 . . . x2a(b−1)x

′
2a(b−1)+1 . . . x′

i−1) = 1,

P (x′
i|x1 . . . x2a(b−1)x

′
2a(b−1)+1 . . . x′

i−1) > 0,
(3.11) {eq3.11}

and successively obtain the letters

x′′
i , 2a−1(2b − 1) + 1 ≤ i ≤ 2a−12b

such that

q(x′′
i |x1 . . . x2a(b−1)x

′′
2a(b−1)+1 . . . x′′

i−1) = 0,

P (x′′
i |x1 . . . x2a(b−1)x

′′
2a(b−1)+1 . . . x′′

i−1) > 0.
(3.12) {eq3.12}

Using formulas similar to (2.8), we recursively obtain the pair λ′a−1
2b , ρ′a−1

2b (in the formulas, the prefix
x1 . . . x2a(b−1)x

′
2a(b−1)+1 . . . x′

2ab is used) and the pair of numbers λ′′a−1
2b , ρ′′a−1

2b (in the formulas, the

prefix x1 . . . x2a(b−1)x
′′
2a(b−1)+1 . . . x′′

2ab is used).

Thus, at this stage of the procedure, we have several possible cases.
In the first case, we know the subwords

x2a−1(2b−2)+1 . . . x2a−1(2b−1), x2a−1(2b−1)+1 . . . x2a−12b,

MATHEMATICAL NOTES Vol. 96 No. 1 2014

54 MEDVEDEVA

which means that the subword x2a(b−1)+1 . . . x2ab is known. If b �= 2n/2a, then we compute the values
of λa

b and ρa
b from the formulas

λa
b = λa−1

2b−1 + ρa−1
2b−1 · λa−1

2b , ρa
b = ρa−1

2b−1 · ρa−1
2b . (3.13) {eq3.13}

In the second case, we know the subword x2a−1(2b−2)+1 . . . x2a−1(2b−1) and the pair of words

x′
2a−1(2b−1)+1 . . . x′

2a−12b, x′′
2a−1(2b−1)+1 . . . x′′

2a−12b.

Then the word x′
2a(b−1)+1 . . . x′

2ab is assumed equal to the concatenation of

x2a−1(2b−2)+1 . . . x2a−1(2b−1) and x′
2a−1(2b−1)+1 . . . x′

2a−12b;

the word x′′
2a(b−1)+1 . . . x′′

2ab is assumed equal to the concatenation of

x2a−1(2b−2)+1 . . . x2a−1(2b−1) and x′′
2a−1(2b−1)+1 . . . x′′

2a−12b.

Let us compute the values of λ′a
b , ρ′ab , λ′′a

b , ρ′′ab from the formulas

λ′a
b = λa−1

2b−1 + ρa−1
2b−1 · λ′a−1

2b , ρ′ab = ρa−1
2b−1 · ρ′a−1

2b ,

λ′′a
b = λa−1

2b−1 + ρa−1
2b−1 · λ′′a−1

2b , ρ′′ab = ρa−1
2b−1 · ρ′′a−1

2b .
(3.14) {eq3.14}

In the third case, we know the pairs of the following words:

x′
2a−1(2b−2)+1 . . . x′

2a−1(2b−1), x′′
2a−1(2b−2)+1 . . . x′′

2a−1(2b−1),

x′
2a−1(2b−1)+1 . . . x′

2a−12b, x′′
2a−1(2b−1)+1 . . . x′′

2a−12b.

The word x′
2a(b−1)+1 . . . x′

2ab is assumed equal to the concatenation of

x′
2a−1(2b−2)+1 . . . x′

2a−1(2b−1) and x′
2a−1(2b−1)+1 . . . x′

2a−12b,

and the word x′′
2a(b−1)+1 . . . x′′

2ab is assumed equal to the concatenation of

x′′
2a−1(2b−2)+1 . . . x′′

2a−1(2b−1) and x′′
2a−1(2b−1)+1 . . . x′′

2a−12b.

Let us compute the values of λ′a
b , ρ′ab , λ′′a

b , ρ′′ab from the formulas

λ′a
b = λ′a−1

2b−1 + ρ′a−1
2b−1 · λ′a−1

2b , ρ′ab = ρ′a−1
2b−1 · ρ′a−1

2b ,

λ′′a
b = λ′′a−1

2b−1 + ρ′′a−1
2b−1 · λ′′a−1

2b , ρ′′ab = ρ′′a−1
2b−1 · ρ′′a−1

2b .
(3.15) {eq3.15}

This concludes the description of the recursive procedure.
Applying the procedure described above for a = log(2n), b = 1 and the estimates λ+(log(2n), 1),

λ−(log(2n), 1), we obtain the word x1 . . . x2n. (Here we assume that the prefix of zero length is known.)
Consider an example. Given the number N ′(w′) = 12, let us find the word w′ of length n = 8. We

obtain qmax = 4n2 = 64. We find λ+(3, 1), λ−(3, 1) using formulas (3.4):

λ+(3, 1) = φ+
196

12
14

=
12 · 2193 + 1

14 · 2193
, λ−(3, 1) =

12 · 2193

14 · 2193 + 1
.

We obtain λ+(2, 1), λ−(2, 1), and then λ+(1, 1), λ−(1, 1), λ+(0, 1), λ−(0, 1) using formulas (3.5):

λ+(2, 1) = φ+
100

12 · 2193 + 1
14 · 2193

=
12 · 297 + 1

14 · 297
, λ−(2, 1) =

12 · 297

14 · 297 + 1
,

λ+(1, 1) = φ+
52

12 · 297 + 1
14 · 297

=
12 · 249 + 1

14 · 249
, λ−(1, 1) =

12 · 249

14 · 249 + 1
,

λ+(0, 1) = φ+
28

12 · 249 + 1
14 · 249

=
12 · 225 + 1

14 · 225
, λ−(0, 1) =

12 · 225

14 · 225 + 1
.

MATHEMATICAL NOTES Vol. 96 No. 1 2014

FAST ENUMERATION OF WORDS GENERATED BY DIK GRAMMARS 55

We obtain χ’s for which inequalities (3.6) hold, i.e.,

λ+(0, 1) ≥ q(χ), λ−(0, 1) < q(χ) + P (χ), P (χ) > 0.

The unique χ satisfying these inequalities is 0; we can see that

λ+(0, 1) > q(0) = 0, λ−(0, 1) < q(0) + P (0) = 1, P (0) = 1 > 0,

at the same time, for 1, these inequalities do not hold, because P (1) = 0. Therefore, x1 = 0.

We can find λ0
1 and ρ0

1 from formulas (2.8):

λ0
1 = q(0) = 0, ρ0

1 = P (0) = 1.

We obtain λ+(0, 2), λ−(0, 2) from formulas (3.9):

λ+(0, 2) = φ+
28

(12 · 249 + 1)/(14 · 249) − 0
1

=
12 · 225 + 1

14 · 225
, λ−(0, 2) =

12 · 225

14 · 225 + 1
.

We obtain χ’s for which inequalities (3.6) hold, i.e.,

λ+(0, 2) ≥ q(χ|0), λ−(0, 2) < q(χ|0) + P (χ|0), P (χ|0) > 0.

These inequalities hold for χ = 1, because

λ+(0, 2) > q(1|0) =
5
14

, λ−(0, 2) < q(1|0) + P (1|0) = 1, P (1|0) =
5
14

> 0,

while the inequalities do not hold for χ = 0, because

λ−(0, 2) > q(0|0) + P (0|0) =
9
14

.

Therefore, x2 = 1.
We obtain λ0

2 and ρ0
2, and then λ1

1 and ρ1
1 by using formulas (2.8):

λ0
2 = q(1|0) =

9
14

, ρ0
2 = P (1|0) =

5
14

, λ1
1 = λ0

1 + λ0
2 · ρ0

1 =
9
14

, ρ1
1 = ρ0

1 · ρ0
2 =

5
14

.

We obtain λ+(1, 2), λ−(1, 2) from formulas (3.9):

λ+(1, 2) =
3 · 250 + 1

5 · 250
, λ−(1, 2) =

3 · 250

5 · 250 + 1
.

We obtain λ+(0, 3), λ−(0, 3), from formulas (3.5):

λ+(0, 3) =
3 · 226 + 1

5 · 226
, λ−(0, 3) =

3 · 226

5 · 226 + 1
.

We obtain χ’s for which inequalities (3.6) hold, i.e.,

λ+(0, 3) ≥ q(χ|01), λ−(0, 3) < q(χ|01) + P (χ|01), P (χ|01) > 0.

The inequalities hold for χ = 0, because

λ+(0, 3) > q(0|01) = 0, λ−(0, 3) < q(0|01) + P (0|01) = 1, P (0|01) = 1 > 0;

the inequalities do not hold for χ = 1, because P (1|01) = 0. Therefore, x3 = 0.

We obtain λ0
3 and ρ0

3 from formulas (2.8):

λ0
3 = q(0|01) = 0, ρ0

3 = P (0|01) = 1.

We obtain λ+(0, 4), λ−(0, 4) from formulas (3.9):

λ+(0, 4) =
3 · 226 + 1

5 · 226
, λ−(0, 4) =

3 · 226

5 · 226 + 1
.

MATHEMATICAL NOTES Vol. 96 No. 1 2014

56 MEDVEDEVA

We obtain χ’s for which inequalities (3.6) hold, i.e.,

λ+(0, 4) ≥ q(χ|010), λ−(0, 4) < q(χ|010) + P (χ|010), P (χ|010) > 0.

The inequalities hold for χ = 0, because

λ+(0, 4) > q(0|010) = 0, λ−(0, 4) < q(0|010) + P (0|010) =
3
5

, P (0|010) =
3
5

> 0;

the inequalities also hold for χ = 1, because

λ+(0, 4) > q(1|010) =
3
5

, λ−(0, 4) < q(1|010) + P (1|010) = 1, P (1|010) =
2
5

> 0.

Thus, x′
4 = 0, x′′

4 = 1. We obtain λ′0
4 , ρ′04 , λ′′0

4 , ρ′′04 from formulas (3.7):

λ′0
4 = q(0|010) = 0, ρ′04 = P (0|010) =

3
5

, λ′′0
4 = q(1|010) =

3
5

, ρ′04 = P (1|010) =
2
5

.

We obtain λ′1
2 , ρ′12 , λ′′1

2 , ρ′′12 , and then λ′2
1 , ρ′21 , λ′′2

1 , ρ′′21 from formulas (3.14):

λ′1
2 = 0, ρ′12 =

3
5

, λ′′1
2 =

3
5

, ρ′′12 =
2
5

,

λ′2
1 =

9
14

, ρ′21 =
3
14

, λ′′2
1 =

12
14

, ρ′′21 =
2
14

.

Let us use the comparisons (3.8). We see that the following two inequalities simultaneously hold:

λ′2
1 + ρ′21 > λ−(3, 1), λ′′2

1 ≤ λ+(3, 1).

Further, the equality 1 = (2n)/23 holds, i.e., b = 2n/2a. Therefore, x4 = x′′
4 = 1, and we successively

find the letters x5, . . . , x8. Then we find a letter x5 such that the conditions

q(x5|0101) = 0, P (x5|0101) > 0

hold. These conditions hold for x5 = 0. We find an x6 such that the conditions

q(x6|01010) = 0, P (x6|01010) > 0

hold. These conditions hold for x6 = 0. We find an x7 such that the conditions

q(x7|010100) = 0, P (x7|010100) > 0

hold. These conditions hold for x7 = 1. We find a letter x8 such that the conditions

q(x8|0101001) = 0, P (x8|0101001) > 0

hold. These conditions hold for x8 = 1. Thus, the unknown word is 01010011.
Now let us transform the number N ′′(w′′) of the word w′′ from the binary system to the m-adic system

with the symbols of the alphabet Am as digits of the system. The algorithm is based on the idea that,
given the binary representation of a number in an m-adic system, we can find the binary representations
for its halves:

N(x1x2 . . . xn/2) =
⌊

N(x1 . . . xn)
(mn/2)

⌋
, N(xn/2+1 . . . xn) = N(x1 . . . xn) modmn/2,

N(x1x2 . . . xn/4) =
⌊

N(x1 . . . xn/2)
(mn/4)

⌋
, N(xn/4+1 . . . xn/2) = N(x1 . . . xn/2) modmn/4,

N(xn/2+1 . . . x3n/4) =
⌊

N(xn/2+1 . . . xn)
(mn/4)

⌋
, N(x3n/4+1 . . . xn) = N(xn/2+1 . . . xn) mod mn/4,

(3.16) {eq3.16}
etc. This action is repeated log n times; as a result, we obtain all the symbols of the number
w′′ = (x1x2 . . . xn)m, which are replaced by the corresponding letters of the alphabet Am. If the result
obtained has less than n symbols, the symbols corresponding to 0’s are put on the left. This results in

MATHEMATICAL NOTES Vol. 96 No. 1 2014

FAST ENUMERATION OF WORDS GENERATED BY DIK GRAMMARS 57

the word w′′. Since, in our example, m = 2, it follows that there is no need for such a transformation.
We obtain

N ′′(w′′) = (101)2, w′′ = α0α1α0α1. (3.17) {eq3.17}

Now the 0’s in the word w′ are replaced by opening brackets of m types in the order given by the word w′′.
The 1’s are replaced by closing brackets of m types so that the resulting word represents a correct
bracketing of m types. This method is uniquely determined by the types of opening brackets. In our
case, we obtain () [] ([]). The denumerated word w is obtained.

The properties of the denumeration algorithm are described by the following theorem.
{th2}

Theorem 2. The memory capacity required for the denumeration of a word of length 2n is
O(n log2 n).

The denumeration complexity, i.e., the time needed to find one letter of the denumerated word
is equal to O(log nM(n log n)/n), where M(n log n) is the time needed for the multiplication or
the division of two words of length n log n.

{cor3}
Corollary 3. If the Schönhage–Strassen fast multiplication algorithm with complexity
M(n) = n log n log log n is used, then the denumeration rate is O(log3 n log log n).

{cor4}
Corollary 4. If the Fürer fast multiplication algorithm with complexity M(n) = n log n2O(log∗ n)

is used, then the denumeration rate is

O(log3 n2O(log∗ n)).

In the computation of the word w′ from its number, the left half x1, x2, . . . , xn and the right half
xn+1, . . . , x2n are decoded independently and the same memory can be used. The same applies to the
computation of the word w′′ from its number. It is easy to see that the memory capacity used for the
encoding and decoding of the word w is asymptotically the same.

The total memory capacity needed to compute the word w from its number is O(n log n).
The time needed to determine the word w from its number N(w) is comprised of the time needed

for determining N ′(w′) and N ′′(w′′) from N(w), of the time needed for determining the word w′
from N ′(w′), and of the time needed for determining the word w′′ from N ′′(w′′).

Let us estimate the time needed to compute N ′(w′) and N ′′(w′′) from N(w). To compute N ′′(w′′),
it is required to perform one operation of division over the numbers N ′′(w′′) and |S2n|, i.e., over
numbers of lengths n log m and 2n. This requires the time M(n log m) = O(M(n)). To compute
N ′(w′) = N(w) − |S2n| · N ′′(w′′), it is required to perform one operation of multiplication of numbers
of lengths n log m = O(n) and 2n = O(n) and one operation of subtraction of numbers of lengths
n(log m) = O(n). To do this, the time O(M(n)) + O(n) = O(M(n)) is needed.

Let us estimate the time needed to compute the word w′ from N ′(w′). To compute λ+(a, b) and
λ−(a, b) from formulas (3.9), it is required to perform two operations of division, with the length of the
numerator and the denominator of the dividend not exceeding

2a+3�log qmax� + 4 = 2a+3(2 log n + 2) + 4 bits

and, for the divisor,

2a+1�log qmax� = 2a+1(2 log n + 2) bits.

The lengths of the dividend and the divisor are proportional to the lengths of the factors used to compute
λa

b from (2.8). Therefore, the computation time for λ+(a, b) and λ−(a, b) will be proportional to the
computation time for λa

b in the enumeration. In addition, in the denumeration, just as in the enumeration,
the values of the quantities λa

b and ρa
b or the pairs of quantities of the same length λ′a

b , λ′′a
b , and ρ′ab , ρ′′ab

are computed in the same way.
In addition, in order to compare λ′a

b + ρ′ab with λ+(a + 1, (b− 1)/2) and λ′′a
b with λ−(a + 1, (b− 1)/2),

it is required to compare numbers whose lengths do not exceed 2a+2�log qmax� + 4. The comparison
time depends linearly on the length of the compared numbers, which is asymptotically less than the

MATHEMATICAL NOTES Vol. 96 No. 1 2014

58 MEDVEDEVA

time needed for their multiplication and division. Therefore, the time needed for the operations of
computing the estimates λ+(a, b), λ−(a, b), the quantities λa

b and ρa
b , (or the pairs λ′a

b , λ′′a
b , ρ′ab ,

ρ′′ab) and of comparing λ′a
b + ρ′ab with λ+(a + 1, (b − 1)/2) and λ′′a

b with λ−(a + 1, (b − 1)/2), where
0 ≤ a ≤ log(2n), 1 ≤ b ≤ 2n/2a, is proportional to the time of encoding w′:

O(log nM(2n log n)) = O(log nM(n log n)).

Let us estimate the time needed to determine the letter xi or the pair x′
i, x′′

i , 1 ≤ i ≤ 2n. To find one
letter or one pair of letters, we need at most two comparisons of words whose length does not exceed
22�log qmax� + 4 = 8 log n + 10 bits. Hence we see that the total number of operations over the bit
words needed at this stage is O(n log n).

Thus, we find that the time needed to find the word w′ from its number N(w′) is

O(log nM(n log n)) + O(n log n) = O(log nM(n log n)).

We can note that the time needed for the denumeration of the word w′′ is proportional to the time of
its enumeration, because the time M(n) needed for the multiplication of two words of length n is equal
to the time needed for the division of two words of length n, i.e., the time needed for the denumeration of
w′′ is O(log nM(n)).

Thus, the total time needed to find the word w from its number, is

O(M(n)) + O(log nM(n log n)) + O(log nM(n)) = O(log nM(n log n)).

The rate of the computation of the word w from its number, i.e., the time needed to compute one letters
of the word w from its number, is O(log nM(n log n)/n). The theorem is proved.

REFERENCES
1. T. J. Lunch, “Sequence time coding for data compression,” Proc. IEEE 54 (10), 1490–1491 (1966).
2. Yu. S. Medvedeva and B. Ya. Ryabko, “A fast algorithm for the enumeration of words with given constraints

on the run lengths of ones,” Problemy Peredachi Informatsii 46 (4), 130–139 (2010) [Probl. Inform. Transm.
46 (4), 390–399 (2010)].

3. T. M. Cover, “Enumerative Source Encoding,” IEEE Trans. Information Theory IT-19 (1), 73–77 (1973).
4. B. Ya. Ryabko, “Fast enumeration of combinatorial objects,” Diskret. Mat. 10 (2), 101–119 (1998) [Discrete

Math. Appl. 8 (2), 163–182 (1998)].
5. A. E. Pentus and M. R. Pentus, Theory of Formal Languages, A manual (Izd. TsPI, Mekh.-Mat. Moskov.

Univ., Moscow, 2004) [in Russian].
6. E. Reingold, J. Nievergelt, and N. Deo, Combinatorial Algorithms: Theory and Practice (Prentice–Hall,

Englewood Cliffs, NJ, 1977; Mir, Moscow, 1980).
Compilers: Principles, Techniques, and Tools[1] is a computer science textbook by Alfred V. Aho, Monica S.
Lam, Ravi Sethi, and Jeffrey D. Ullman about compiler construction

7. A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques, and Tools (Pearson
Education, Inc., 2006; Williams, Moscow, 2008).

8. R. E. Krichevskii, Information Compression and Search (Radio i Svyaz, Moscow, 1989) [in Russian].
9. A. Schönhage and V. Strassen, “Schnelle Multiplikation grosser Zahlen,” Computing 7 (3-4), 281–292

(1971).
10. M. Fürer, “Faster integer multiplication,” in Proceedings of the 39th Annual ACM Symposium on Theory

of Computing (ACM, New York, 2007), pp. 57–66.
11. A. Shen’, Programming: Theorems and Problems (MTsNMO, Moscow, 2004) [in Russian].

MATHEMATICAL NOTES Vol. 96 No. 1 2014

