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Abstract—The problem of enumerating and denumerating words generated by Dik grammars
arises in the work of compilers for high-level programming languages and a number of other
applications. The present paper proposes an algorithm for the fast enumeration and denumeration
of words of Dik languages; the complexity of this algorithm per one symbol of enumerated words
is O(log® nloglogn) bit operations, provided that the Schonhage—Strassen multiplication and
division algorithm is used. The well-known methods applied earlier possess complexity O(n) per one

symbol of enumerated words. The construction of the proposed algorithm is based on the Ryabko
method.
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1. INTRODUCTION

The problem of enumerating words from an ordered set W is as follows: to each word from W we
assign its number, i.e., a unique number from the range [0; [W| — 1]. In the denumeration problem, we
search for the solution of the inverse problem: from a number in the range [0; |W| — 1] we must find the
corresponding word from W. Usually we consider the lexicographic order on W, while the number is
expressed in a binary system.

The problems of enumerating combinatorial objects of different form have attracted the attention of
many authors. Among these problems, we note the problem of enumerating words with a given number
of 0’s and 1’s and the problem of enumerating words with a bound on the number of consecutive identical
symbols [1], [2]

In general form, the problem of enumeration and denumeration was considered in Cover’s paper [3],
where a general method for any given set of words was proposed. Ryabko [4] was first to propose a fast
general algorithm of enumerating words of a given set which, for sets of many combinatorial objects, has
a rate exponentially greater than that in the Cover method.

In the present paper, we consider the problem of enumerating and denumerating words of Dik
languages [5], or of “regular” sequence of brackets. Words of the Dik language over a 2m-letter alphabet
are sequences of regularly embedded brackets of m types. As an example, consider all words of length
n = 4 of the Dik language over six letters, i.e., sequences of length 4 of regularly embedded brackets of
three types. There are 18 such words (see the table). To them we assign numbers in binary form of the
length [logy 18] = 5. All such words are placed in the first column, while their numbers in binary form
are written in the second column.

To any word belonging to the Dik language over a 2m-letter alphabet of length 2n the enumeration
algorithm assigns a sequence of 0’s and 1’s, i.e., its number. For example, for the set of words of the Dik
language over the 6-letter alphabet of length 4 located in the order given by the table, for the given word
(){} the algorithm must find its number 00101.

The necessity for the fast enumeration and the denumeration of words of Dik languages arises in the
work of compilers of high-level languages related to the compression of regular sequences of brackets
and the random generation of regular sequences of brackets [6]—[8].
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44 MEDVEDEVA

Table

The word | Its number | The word | Its number

(()) 00000 (1] 01001
() () 00001 [{}] 01010
(1) 00010 [1{} 01011
()] 00011 {()} 01100

({1 00100 {}() 01101
() {} 00101 {11} 01110
[()] 00110 {}[] 01111
[1() 00111 {{}} 10000
[[]] 01000 {3 {} 10001

The enumeration algorithm of words of length 2n belonging to Dik languages over a 2m-letter
alphabet based on the Cover method [3] has complexity O(n?) of bit operations per one enumerated
word or O(n) of bit operations per one symbol of enumerated words.

The method for enumerating words of length 2n belonging to Dik languages over a 2m-letter alpha-
bet proposed in this paper is based on the approach from [4] and has complexity O(log nM (nlogn)/n)
of bit operations per one symbol of enumerated words, where M (k) is the time needed for the mul-
tiplication or division of words of length k. While the Schonhage—Strassen method [9] has complexity
O(klog k log log k), for multiplication or division of words of length &, the complexity of the method under
consideration is O(log® n loglogn) per one symbol of enumerated words. While the Fiirer method [10]
has complexity O(k log k2€0°g" k)) for multiplication or division of words of length k, the complexity of
the method under consideration is O(log3 n29(°¢" 7)) per one symbol of enumerated words.

2. FAST ENUMERATION ALGORITHM FOR WORDS BELONGING TO DIK LANGUAGES

Denote by D3™ the set of words of the Dik language over a 2m-letter alphabet of length 2n. We must
find the number of the word w from the set D3™ among all the words in this set.

Let us describe the enumeration algorithm by giving an example of the search for the number of the
word w = () []([]) among the words in the set Dg, i.e., among all the words of length 8 representing
correct bracketings of two types.

Let us replace the opening brackets of all kinds by 0’s and the closing brackets of all kinds by 1’s. It is
easy to see that the resulting word w’ will be a word of the Dik language over the alphabet {0,1}, i.e., it
will correspond to a correct bracketing of one kind. In this case, we obtain the word w’ = 01010011.
Denote by Sy, the set of all words of n, 0’s and n, 1’s corresponding to correct bracketings. The
cardinality of Sy, is equal to the nth Catalan number[11],

|San| = Cn = C3,, — O3
(Here and elsewhere, C}7* denotes the binomial coefficient (" ).) To describe the method, we consider the
auxiliary set A", of words of length n belonging to the alphabet A,,, = {ag,a1,...,am—1}. Now, to the
enumerated word of the set D3™ we assign a word w” belonging to the set A”,. To do this, we replace all
the opening brackets of the first type by the symbol ag, all the opening brackets of the second type by the
symbol ay, etc. and eliminate the closing brackets. In this case, the word ()[ ] ([]) will be assigned to

the word w” = agajagay. It can be seen that the order of types of closing brackets is uniquely determined
by the order of types of opening brackets.
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FAST ENUMERATION OF WORDS GENERATED BY DIK GRAMMARS 45

Thus, each word of the set D3™ can be uniquely assigned to a pair of words (w’, w”), one belonging
to the set Sa,, and the other to the set A}}. And conversely, each pair of words, one from the set Sy, and
the other from the set A”,, uniquely determines the corresponding words of the set D3™. Thus,

D3] = |A] - [S2n] = m™ - (C5, = C3,7).
In the example under consideration,
D] = |AY] - |Ss| = 2*- (G — CF) = 2*- (70 - 56) = 224,

To describe the algorithm, we shall use the following ordering of words from the set D3™: first, we put
them in the lexicographic order of the corresponding words of the set A7 and then in the lexicographic
order of the corresponding words of the set Sy,,.

Denote the number of the word w in the set D3™ thus ordered by N (w), the number of the word w’ in
the lexicographically ordered set Sa,, by N'(w’), and the number of the word w” in the lexicographically
ordered set A7, by N”(w"). Then it is easy to see that

N(w) = N"(w") - [Sau| + N'(u). (21

[t is convenient to begin the description of our method with the description of how to find the
number N’(w') by using the Cover method [3]. By this method, the number of a word in the
lexicographically ordered set Sa,, can be obtained from the formula

2n
N’(xlxg...xgn) = Z Z NSQn(xlxg...xi_lx), (22)

=1 x<x;

where Ng, (x123...z;—1x) is the number of words from Ss,, beginning with zyxa ... z;_1x.

Using Ng,(01) as an example, let us find this number, i.e., the number of words beginning with 01,
belonging to the set of words of length 8 composed of 0’s and 1’s, and corresponding to correct
bracketings. The words of the set Sg beginning with 01 will be the words composed of four 0’s and
of four 1’s beginning with 01, except those not corresponding to correct bracketings. The number of all
words composed of four 0’s and four 1’s beginning with 01 is easy to find; it is equal to the number of all
words composed of three 0’s and three 1's, i.e., C3 = 20.

The words beginning with 01 composed of four 0’s and four 1’s and not corresponding to correct
bracketings are words of four 0’s and four 1’s for which there exists a j, 2 < j < 8 such that the number
of 1’s in the sequence x5 ... x; exceeds the number of 0’s in this sequence. There exists a one-to-one
correspondence between such words and all words composed of three 0’s and five 1’s and beginning
with 01. Such a correspondence can be defined as follows. For a word not corresponding to correct
bracketings, there exists a j, 2 < j < 8, such that the number of 1’s in the sequence x> . .. x; exceeds
the number of 0’s in this sequence. For each such word, we can find the minimal j. We can see that, for
such a 7, the number of 1's in the sequence zz5 . .. x; exceeds the number of 0’s by one symbol. In this
word, let us now replace all the symbols after the jth by the opposite ones. We obtain a word composed of
three 0’s and five 1’s, beginning with 01. Since this mapping is bijective, the number of words beginning
with 01, composed of four 0’s and four 1’s, and not corresponding to correct bracketings is equal to the
number of all words beginning with 01 and composed of three 0’s and five 1’s. The number of such words
is the same as the number of words composed of two 0’s and four 1’s, i.e., C’g = 15. Thus,

N5, (01) = C§ — C2 = 5.
In general form,

NSQn (.’El.’EQ e l’z) == Cmiz - Cnizil

2n—1i 2n—1

B (2n —1)! (2n —1)!

T n—2)(n—it+2)! (m—z—-1Dl(n—itz+1)
(2n — )2z —i+1)

T m—2)ln—itz+ 1)’

(2.3)
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46 MEDVEDEVA

where z is the number of 0’s in x129 ... x;, provided that xxs ... x; can be the beginning of the word
corresponding to the correct bracketing of length 2n. If z125 . . . z; cannot be the beginning of the words
corresponding to the correct bracketing of length 2n, then, obviously, Ng, (x1...2;) = 0.

We see that Ng, (z1...z;) depends only on 0 < i < 2n, n, and z, the number of 0’s in z1z2. .. x;
(0 < 2 <1i,0< z<n). Thus, foragivenn, there exists at most 3n? /2 different numbers Ng, _ (71...;).

In addition, we see that the values of Ng,, (21 ...x;) do not exceed 2271 i e, are of length not greater
than 2n — 1.

We shall use an auxiliary table in which each pair of values of i, 0 < i < 2n, and z,0 < z < min(i, n),
is assigned the value of
2n—0)!(2z —i+1)
n—z)(n—i+z+1)!"
identical for all words of length i with z, 0’s. The size of the table is O(n?).

To obtain the number of the word w’, we use (2.2) to find the value of Ng,, (x122 ... 2;-10) for i such
that z; = 1 and then add them together. For each such ¢, these values are found as follows. We find the
value of z, equal to the number of 0’s in the word x; ... x;_10. Then, using the table, we find the value of
Ng,, (x1 ... x;) corresponding to the pair i, z.

In our example,

NSQn(-Tl .. CCZ) = (

N’(01010011) = Ng,(00) + Ns,(0100) + Ng, (0101000)
+ Ng,(01010010) = 9+ 3 + 0+ 0 = 12. (2.4)

Here the values of Ng,(00) and Ng,(0100) are taken from the table. For the values of i equal to 2,
4, 6, and 8, we have x; = 1. For ¢ = 2, the word x;_10 is 00, and hence z = 2; therefore, from the
table we find the value of Ng,(00) corresponding to the pair (2,2) and equal to (6!3)/(2!5!) = 9. For
¢ = 4, the word z1...x;_10 is 0100, and hence z = 3; therefore, from the table we find the value of
N, (0100), corresponding to the pair (4,3) and equal to (4!3)/(1!4!) = 3. The values of Ng,(0101000)
and Ng,(01010010) are zero, because there are no words in the set Sg beginning with 0101000 or
01010010.

We see that, for such a computation, we need to perform a maximum of n operations of addition of
words of lengths from 1 to 2n. Thus, if the auxiliary table is used, then the complexity of the computation

of the number of a word by the Cover method is O(n?) or O(n) per one symbol of enumerated words.
Let us now pass to the description of the proposed method for finding N'(w’).
Let us determine the quantities P(z;|x1 ... zi—1), ¢(x;|z1 ... 2;—1) for 0 < i < 2n as follows:

Ns,, (x
Play) = ﬁ? (@ilz1as ... 2i1) = Ng,, (zx1x2...2-1)’
. 1 o T

q(z1) = Z P(x), q(zi|lzy .. wimq) = Z P(x|zy...xi—1).

x<x1 X<T;

NS% (561562 e CCZ)

(2.5)

We can see that, by (2.2),
N’(xl .. xgn) = ‘Sgn’ (q(xl) + q(xg\xl)P(xl) + q(xglxlxg)P(xg\xl)P(xl) —+ - ) (26)

The idea of the method is to perform bracketing in this expression in such a way that, in order to compute
the number of a word, the majority of operations is performed over short numbers. Such a bracketing is
as follows:

N'(z1 ... 290) = [Sonl((q(1) + q(aa|z1)P(21))
+ ((q(zs|z122) + q(sgley .. x3) P(as|zize)) Plag]a ) P(xy)) + -+ ). (2.7)
For0 < a <log(2n), 1 < b < 2n/2% we determine the quantities p, A as follows:

pg :P(xb\xl...xb,l), )\2 :q(xb\xl...xb,l),

- B B B B (2.8)
i = 05105 M= 250 + 05 g
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Then
XM = ((q(1) + q(a]1) P(x1))
+ ((q(zs|x122) + q(24|271 - . - 23) P(23|T122)) - P(22|21)P(21)) + - - - )
Combining this with (2.7), we obtain

N'(212y ... 09n) = MBS, | = AECY (cp — cp—y, (2.9)
We can see that, in the case 0 < 7 < 2n, for z; = 0,
2n—i)!(2z2—1+1) / 2n—i+ 1)1 (22 —14)
m=z2)n—i+z+1)!/ (n—z4+D(n—i+2z+1)!
(2z—i+1)(n—2+1)

P(mi\xlxg . xi_l) =

B (2z—i)(2n—i+1) (2.10)
and, forz; =1,
‘ oy Cn=d)!(22—-i+1) 2n—i+1)1(2z2 —i+2)
P(%m”“w“l)_(n—z)!(n—i+z+1)!/ (n—2)(n—itz+2)
:(2z—i+1)(n—i+z—|—2) @2.11)

2n—i+1)(2z —i+2)

Let us now pass to computations serving as an illustration of the algorithm. By formulas (2.10) and
(2.11), we obtain

P(xy) = p(l), P(xa|xy) = pg, coey Plaglrime .. .27) = pg,
Q('Tl) - )\(1)7 Q(CU2) - )\(2)7 ey Q(CUS) - )\gu
and
5 6
P(z1) =1,  Plazfz1) = P(A|0) = -, Plasfarzz) = P(0[01) = -,
4 4
P(z4|z12023) = P(1]010) = 0 P(z5|z1...24) = P(0]0101) = 1
3 6
P(zg|z1 ... x5) = P(0]01010) = 5 P(z7|zy ... 26) = P(1]010100) = 5
2
P(zg|zy...x7) = P(1/0101001) = 3 (2.12)
9
q(z1) = q(0) =0, q(z2|z1) = q(1]0) = 1 q(w3|z122) = q(0]01) =0,
6
q(r4|lr17273) = q(1]010) = 10 q(zs|zy ... 24) = q(0/0101) =0,
q(zg|z1 ... x5) = ¢(0]01010) = 0, q(z7|z1 ... x6) = ¢(1]010100) = 0,
q(zslxy ... x7) = ¢(1]0101001) = 0.
Accordingly,
5 2 1
=1 =15 MA=L =5, =1 =5 =1 k=1 o13)
9 3 '
)‘(1):07 )‘gzﬁa )‘gzov )\0:37 )‘(5):07 )‘8207 )‘9_07 )‘g:
Further, from (2.8), we obtain
5 2 1 9 3
p%:_7 p%:_7 p;l»):—, plll:]-u A%:_7 A(Q):_7 )‘g:()? )\220’
14 5 2 14 5
1 1 6 1 6 (2.14)
pii?a pézia )‘%:?7 )\%ZO, p?:ﬂv )‘?:?
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48 MEDVEDEVA

By (2.9), we have
N(01010011) = A3 - |Sg| = 6/7 - (C& — C3) = 12.

Thus, we have obtained N’(w'), the number of the word 01010011 belonging to the set Sg.

The search for the number of a word w” in the set A, involves expressing an m-adic number in
binary form and representing a letter from the alphabet A,, by digits of the m-adic system: « is the digit
corresponding to 0 in this system, «; is the digit corresponding to 1, etc. To find the binary representation
of an m-adic word w”, we use the fast transformation algorithm [4] from the m-adic system to the binary
system, based on the principle “divide and rule”.

Denote the binary representation of the m-adic word x; ... x; by (1 ... x;)2. At the first step, we find
the binary representations of the digits comprising the word w”: (ag)2 = 0, (a1)2 = 1, (a2)2 = 10, ete.
Knowing the binary representations of two m-adic words of length i, x1zs...2; and x; 11200 . .. 29,
we can find the binary representation of the m-adic word x5 . . . x9; of length 2¢ composed of these two
words from the formula

(.’/leg L xgi)g = (.’/leg L xi)g . mi + (xi+1xi+2 L xgi)g.

Using this formula, from n binary representations of the letters comprising w”, we obtain the binary
representations of n/2 subwords of length 2 comprising w”; further, from these subwords, by the same
formula, we find the binary representation of n/4 subwords of length 4 comprising w”, and continue
these computations until we obtain the binary representation of w”, i.e., N”(w").

Obviously, in our example, there is no need for such a transformation, because the system corre-
sponding to the alphabet As, is already binary:

N”(aoalaoal) == (0101)2 = 5.
Using (2.1), we obtain the number of the word ()[] ([]):
N((O)[]1([])) = N"(aparapaq) - 14 + N'(01010011) =5 - 14 + 12 = 82.
The following theorem describes the properties of the proposed method.

Theorem 1. The memory capacity required for encoding a word of length 2n of the Dik language
over a 2m-letter alphabet is O(nlogn) bits. The encoding rate of a word of length 2n of
the Dik language over a 2m-letter alphabet (i.e., the time needed for encoding one letter) is
O(log nM (nlogn)/n) bit operations, where M (k) is the time needed for the multiplication of two
words of length k.

Corollary 1. /f the Schonhage—Strassen fast multiplication algorithm with
M (k) = O(klog kloglog k)
is used, then the enumeration rate is O(log® nloglogn).

Corollary 2. If the Fiirer fast multiplication algorithm with
M (k) = O(klog k20Uos™ k)

is used, then the enumeration rate is O(log® n200°g" 1)),

The computation time for N(w) consists of the computation time for N’(w’), the computation time
for N”(w"), and the computation time for N(w) (the latter is obtained from the computed values
of N'(w') and N"(w")).

Let us find the computation time for N’(w’). It consists of the computation times for p§ and Af,
where 0 < a <log(2n), 1 <b < 2n/2% and the computation time for the product )\log(Q")ngnl. To
compute pf and ), 1 < b < 2n, it is required to compute 2n values of P(xp|z1 ... zp—1) and 2n values
of P(x|z1...2p—1), Where x < . To compute each of these values from formulas (2.10) or (2.11), we
need to perform one multiplication of numbers of length log(2n) to determine the numerator and one
multiplication of numbers of length log(2n) to determine the denominator.
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FAST ENUMERATION OF WORDS GENERATED BY DIK GRAMMARS 49

Denote by M (n) the time needed for the multiplication of two numbers of length n.

For 1 < b < 2n, the computation time for pf and A} is 8nM (log(2n)).

[t follows from (2.10) and (2.11) that, for 1 < b < 2n, the numerators and the denominators of the
fractions P(xp|21 ... 1), (and, obviously, of the fractions P(x|z1 ... 2s_1), X < p) do not exceed 4n?.
To record the numerator, just as the denominator of these fractions, at most 2log n + 2 bits are required.
Therefore, it follows from (2.8) that, for 1 < b < 2n, in order to record the fractions )\2 and ,02, it suffices
2log n + 2 bits for the numerator and the same amount for the denominator. It follows from (2.8) that,
for 1 < b < 2n, the computation of the quantities p} or A requires, respectively, two or three operations
of multiplication of numbers whose length is at most 2log n + 2 bits and the total number of operations
of multiplication needed to compute all the A}, p} for 1 < b < n is 5n. To compute A}, it suffices to apply
the usual equality a/b + ¢/d = (ad + bc)/(bd) requiring three multiplications. This yields fractions that
require at most 2(2log n + 2) bits for recording the numerator and the same amount for the denominator.
Similarly, for 1 < b < n/2, the computation of p? and A} requires 5n/2 operations of multiplication over
numbers of length 2 - 2log n + 4 bits, and so on; for 1 < a < log(2n), 1 < b < 2n/2%, the computation
of p¢ and A requires 5n/2%~1 operations of multiplication over numbers of length 2471 (21log n + 2) bits.

Therefore, for 1 < a <log(2n), 1 <b < 2n/2% the total computation time for A} and pf can be
expressed as

on a—
5nM(210gn+2)+~'+FM(2 Y(2logn +2)) + - +5M(n(2logn + 2)). (2.15)

Denote by M*(n) the time needed for the multiplication of two numbers of length n divided by the length
of these numbers: M*(n) = M(n)/n. Then by (2.15), the total computation time for A# and pf! is

10nlognM*(2logn) + 10nlognM™*(4logn) + - - - + 10nlog nM™(2nlogn). (2.16)

In this sum, there are log(2n) summands and each of them is not greater than 10n log nM*(2n logn).
Thus, the computation time for the fractions Aj and p is

M (n2logn)

O((logn + 1)10nlog nM*(n2logn)) = O (n log?n n(21og 1)

> = O(lognM(n2logn)). (2.17)
The computation time for the product M°8(2™)| Sy, | consists of the computation time for the product of
the numerator of \°&(2") and |S,,,| and the computation time for the division of the resulting number

by the denominator of A°2(2") The number of symbols required for recording the numerator of Al°8(27)
does not exceed 2n - 2log n. The number of symbols required for recording |.Sa, |, does not exceed 2n,
because the number of binary sequences of length 2n corresponding to the correct bracketing of (|S2y,])
is less than the number of all binary sequences of length 2n. Thus, the time needed for the multiplication

of the numerator of A\°8(2") and |Sy,| is M (2n2logn). The length of the resulting number does not

exceed 4n(2log n). The length of the denominator of A\°2(%) does not exceed 2n 2log n. Since the time
needed for the division of two numbers of length a is equal to the time needed for the multiplication of
two numbers of length a, it follows from [7] that the time needed for the division of the resulting number

by the denominator of Al°8(") is M (4n 21og n).

Thus, the computation time for N’(w’) is equal to the sum of the computation time for p and ) for
1 <b< 2n,ie, 8nM(log(2n)), of the computation time for Af and p for

2n
1 <a <log(2n), 1§b§2—a,

i.e., O(lognM(n2logn)), and of the computation time for A1°8(") |Gy | i.e.,
M (2n 2logn) + M (4n 2logn),
giving
8nM (log(2n)) + O(lognM (n2logn)) + M(2n2logn) + M(4n 2logn)
= 8nlog(2n)M*(log(2n)) + O(lognn(2logn)M*(n2logn)) + O(M (4n 2logn)
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50 MEDVEDEVA

= O(8nlog(2n)M*(log(2n)) + log nn(2logn)M*(n2logn) + M(4n2logn)
= O(nlogn(2logn)M*(4n2logn)) = O(lognM (nlogn)). (2.18)

Let us now determine the computation time for N”(w”). The computation of each of the elements
(x122)2, . .., (Tp—1Ty)2 requires one multiplication of the numbers m and x; fori equalto 1,3,...,n —1
and one addition of the resulting products and the numbers z;;. The number of symbols required
for recording the number m, just as for recording z;, does not exceed logm. Therefore, the time
needed for their multiplication is M (logm) = O(1). The length of the resulting product does not
exceed 2logm. The length z; 11 does not exceed logm. Therefore, the time needed for their addition
does not exceed 2logm = O(1). Thus, the computation of all elements (x122)2,..., (Tn_12n)2
requires n operations taking the time O(1). The total time is O(n). Similarly, the computation of
(x122x324)2, .., (Tn_3Tp_oTn_12,)2 requires n/4 operations taking the time M (2logm) = O(1),
and n/4 operations taking the time 4logm = O(1). The total time is O(n), etc.; the computa-
tion (z1...%91)2, ..., (Ty_ok_1...75)2 for 1 <k <logn requires n/2* operations taking the time
M (281 1logm, and n/2¥ operations, taking the time 2% log m. The total time is

n _
o M (281 logm) + 2% log m.
The total computation time for N”(w") is

g(M(logm) +2logm) + %(M(Qlogm) +4logm) +--- + (M(g logm) —i—nlogm)

= g - (logmM*(logm) + 2logm) + — - (2logmM*(2log m) + 4logm) + ...

~|3

..._|_(glogmM*(glogm>+nlogm>. (2.19)
This expression contains log n summands, each of which does not exceed
g logmM* <g logm> + nlogm;
thus, the time needed to compute N”(w"), is
logn (g logmM* (g log m) + nlog m) = O(lognM(n)). (2.20)

Let us determine the time needed to compute N(w) from N'(w') and N”(w") from (2.1). The number
of symbols required for recording N”(w") is at most nlogm. The number of symbols required for
recording the number |Ss,|, is at most 2n. The multiplication of these numbers requires the time
M (nlogm) = O(M(n)). The number of symbols required for recording the resulting number is at most
nlog m. The number of symbols required for recording N’(w’) is at most 2n. The addition of the resulting
number and N'(w’) requires the time nlogm = O(n). Thus, the total time needed to compute N(w)
from N'(w’) and N”(w"), is

O(M(n)) + O(n) = O(M(n)). (2.21)
[t follows from (2.18), (2.20), (2.21) that the total time needed for determining the number w is
O(lognM(nlogn)) + O(lognM(n)) + O(M(n)) = O(lognM (nlogn)).

The complexity of the computation of the number of the word w per one symbolis O(log n/nM (nlogn)).

Let us estimate the memory capacity needed for the enumeration. To determine N’(w’) in the process
of the computation of A} and p§ for1 < a <log(2n),1 < b < 2n/2%, we use only the quantities )\Z_l and
p‘g_l, 1<a<logn,1 <b<2n/2% Therefore, for the enumeration, it suffices to have memory capacity
for storing the collections of Af, pff, 1 < a <log(2n), 1 < b < 2n/2¢% and Ag“, pgﬂ, 1 <a<logn,
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1 < b < 2n/2% The length of each fraction A¢ and p¢ is at most 2°*1(21log n + 2). Hence the memory
capacity needed to determine the number of the word w’ is at most O(nlogn).
To determine N”(w") in computing

(1 ... Tgr)2, s (Tpy_gkyy - Tn)2, 1 <k<logn,

only the quantities (21 ... zgr-1)2,..., (2, _ok-1,1 ...2y)2 are used. Therefore, for the enumeration, it
suffices to have memory capacity for storing the collections

(1. ok)2s ooy (Tpghyy - Tn)2, (1. . Tgi-1)2, ..o, (T _gk—141 ... Tn)2, 1 <k <logn.
The length of each number
(1. Tok)2s ooy (T _ghyg .- Tn)2
is 2% log m; there are n/2* such numbers in all. The length of each number
(1. @ok—1)2, oo, (T _ok—141 ... Tp)2

is 2°=1logm; there are n/2¥~! such numbers in all. Hence the memory capacity required to com-
pute N”(w") is at most O(nlogm) = O(n).

The total memory capacity needed to compute N(w) is O(nlogn)+ O(n) = O(nlogn). The
theorem is proved. O

3. THE DENUMERATION ALGORITHM
Let us describe the decoding algorithm. As an example, we consider the search for a word from the
set Dg, provided its number N = 82 is known.
From the number N, we find N'(w") and N”(w"):
N'(w') = Nmod|S|, N"(w") = |N/|S|].

In our example, N'(w') = 82mod 14 = 12 and N"(w") = [82/14] = 5.

Given N'(w'), let us find the word w’ from the set Sa,.

To describe the algorithm, we introduce auxiliary functions for the upper and lower bounds for A?. Let
p/q be a rational number expressed as the pair of positive integers p, ¢, p < ¢, and let ¢ > 1 be an integer.
Set I = |logq]. Let (gqi—1-..qo) and (pipi—1 -..po) be the binary representations of the numbers ¢
and p. Then we define ¢, (p/q) and ¢; (p/q) as follows:

;_ Z22 4 2l7t l'_ - ZQZ
¢j(§> _ Zz—lfltp ’ ¢; (g) _ ZlZz—l tp (31>

Dici—t 32 imi—t 62" + 217

If1 —t < 0, then we multiply the numerator and the denominator of the resulting fraction by 2-(¢=%).

For example,
9 5 9 4
+ —_— = — o —_— = —
¢3 <17> SRR (17) 9’

Let gmax be equal to the maximal denominator of the numbers

NSQn (.’El e .TiJrl)
N52n($1 e .CI?Z)
It follows from (2.10) and (2.11) that

s xl...x%GSgn, 1<i<2n—1.

fmax = 4n”. (3.2)

From (2.8), we find that the denominators of the rational fractions A¢ and p¢ do not exceed ¢2,,, for all
1 < b < 2n/2% and, therefore,

o 1

pb > 2a

qm ax

(3.3)
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Given the number N'(w’), the first step in the search for the word w’ from the set Sy, consists in
computing the estimates A™ (log(2n), 1), A~ (log(2n), 1) using the formulas

N'(w'
)\Jr (10g(2n)7 1) = ¢;_n [10g qmax | +4 (ﬁ) 5
_ _ N'(w'
A (log(2n)7 1) = ¢8nﬂogqmax]+4 (—‘5(2 ’))

Given the prefix o1 ... 29(,_1) and estimates A (a,b), A7 (a,b) (0 < a <log(2n), 1 < b < 2n/2%),
let us describe a recursive procedure for finding the subword @ga(_1)41 - - . T2ep and the quantities Ay,
py or a pair of words such that one of them is zga(y_1)11 ... z2qp, and the corresponding pair of the
conjectured values of A} and pf. Further, if b = 2n/2¢, then by this procedure, we can uniquely determine
the subword 29,2441 ...22,. (In this case, we do not need to find A\, pf, because, given the prefix
xq ...Top—2e and the subword 9, _2a11 ... T2y, we can find the unknown word z ... x9,.)

(3.4)

Let us compute the estimates A™(a — 1,20 — 1), A~ (a — 1, 2b — 1) using the formulas
A(a—1,2b—1) = A (a, b)),
A(a—1,2b—1) = A" (a,b)).

J’_
¢2a+1 |—10g Qmax.| +4(

(3.5)

[fa—1> 0, then, given the prefix x1 ... Zga-1(2,_9) and these estimates, we carry out the recursive
procedure for finding the subword x2a—1(2b_2)+1...CCQa—l(Qb_l) and the quantities Agz;—lp pgbfl or
the pair of words, one of Which iS Tga-1(2p—2)41 - - - Taa—1(2p—1), and the corresponding pair of the
conjectured values of )\% 1 Py 1 Denote the lex1c0graph1cally smaller word from the pair of words

the greater word by z] and the corresponding

E 1(26—2)+1 * T 1(2b 1) 20-12(p—2)+1 * 2@-1(21)71)’
la—1 )\/la 1 ra—1 /1a—1

conjectured values of )‘21) 1 Pop 1 by Aoy 75 Agp—_1» Pop_1> and po 1.
[f a — 1 =0, then we obtain letters x, x € {0, 1}, for which the following conditions simultaneously
hold:
P(X’aj‘l - .11?2572) > 0,
AT(0,2b — 1) > q(x|71 ... 22p_2), (3.6)
)\_(0, 2b — 1) < q(X’.ﬁlfl ce .Q?Qbfg) + P(X’xl ce be,Q).

If there exists one such x, then wg,_; = x. If there exists two such x’s, we assume that 2}, , is equal to
the smallest of the two, i.e., zero, while z,_, is taken as the greatest of the two such x’s, i.e., as 1. In

the first case, we compute the values of XY, ; and p9, ;| from formulas (2.8), while, in the second case,

we compute the values of Nij 1, p&) |, N3P |, and plp_, using the following formulas:

)‘Qb 1= (befllxl s $2b,2), )\,2/{(,) 1= Q(xgb,ﬂxl . .Qfgbfg)’

110

(3.7)
PQb—l = P(xébfl‘xl C L Tp-2), Pap—1 = P(xgbfl‘xl o Top_2).

Thus at this stage of the procedure, we obtain the subword 1 ... X3a-1(9_9) and the values of )\gb__ll

and pS; !, or the words z ... x/2a71(2b—2)’ ... xé’a,l(%_m and the values of Ng—L pla=1 A\Jo—1 and
p’Q’Z_ll. In the second case, we verify whether the following inequalities hold:
)\/ + ra—1 < A b ,
51 T Py (a;b) (3.8)

Aeml > At (a, b).
[f the first inequality holds, then

. " a—1 Na—1 /la—1
Ty ... Toa—1(2p—2) = L1 -+ Lya—1(2p—2)> Agp—1 = Agp_1s Py 1 = Pop—1-
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[f the second inequality holds, then
T1...Toa—1(2p—2) = .. 95/2(1—1(21;72)7 X2lb_—11 = )‘l2ab_—117 o 1 = Py 11
If, at this stage of computations, the exact values of )\ab , and pS, 1 are known (from the use of the

comparisons (3.8) or without them), we compute the estimates A™(a — 1,2b), A~ (a — 1, 2b) using the
formulas

At (a,b) — )‘gb_—ll
)\+(a — 17 2b) - ¢;—a+1 flongaX1+4< pal;l >’
2b—1
7 - (3.9)
A~ 1,2b) = ¢, e
(a—1,2b) = ¢2a+1nogqmax1+4 Py ' |
2b—1

Let us apply to them the recursive procedureifa —1 > 0, obtaining the subword xoa—1(9y_1)11 - - - Tga-19p

and the values of )\“b , Py ! (or, in the case b = 2n/2%, only the subword Ta—1(2h—1)41 - - - Toa—12p) OF
a pair of subwords such that one word from this pair is Zga-1(95—1)41 - - - T2e-19s, and the corresponding

pairs of the conjectured values of ng , Py ~! Butifa —1 = 0, then the resultmg estimates are subjected
to actions similar to those performed with the estimates /\Qbfl, prfl, as a result, we obtain gy, )‘va pr

or the pairs of letters o, and 2, , (x4, < x4, ) and the pairs of values of Af), pi2 AJ9. o0, Butif b = 2n,/2,
i.e.,,a =0, b= 2n and we have found the letters x5, and z%,, then this implies that zo,, = z%,.

[f neither of the inequalities (3.8) holds, then, for b = 2n/2%, this means that x9a(,_1)41 . . - ¥2.-1 has
been obtained and is equal to xga(b71)+1 .. x’Q’a,l. We then successively find the letters
zi, 207N - 1)+ 1< <207,
such that
q(zi|lzy ... zi—1) =0,

3.10
P(xi]xl...xi_l) > 0. ( )

[f neither of the inequalities (3.8) holds and b # 2n /2%, then we successively obtain the letters

af, 27l -1)+1<i<2v79

such that

q(x;\xl e an(bfl)xIQ‘l(bflykl e x;—l) + P(x;]xl e x2a(b71)x/2a(b—1)+1 e x’/ifl) = 1,

, , , (3.11)
P(xzfxl e an(b_l)an(b_1)+1 e xi_l) > 0,
and successively obtain the letters
o, 22— 1) +1<i <2712
such that
q(.ﬁlf;/’xl .. an(bfl)xga(bil)+1 . x;Ll) = 0,
" " 1 (3 12)
P(Zlfz ’xl e an(b_l)an(b_1)+1 e xi_l) > 0
Using formulas similar to (2.8), we recursively obtain the pair Aj,~ L ,o’2“b L (in the formulas, the prefix

1. . Doa(p-1)Tha(y 1)1 - - - Thap 1S used) and the pair of numbers Agi=L pha=1 (in the formulas, the

prefix zp ... x2“(b—1)x/2/a(b71)+1 ... xhay is used).
Thus, at this stage of the procedure, we have several possible cases.
In the first case, we know the subwords

L2a—1(2b—2)+1 - - - T2a—-1(2h—1)> L2a—1(2b—1)+1 - - - L2a—12p,
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which means that the subword @ga(_1)41 - . . T2ap is known. If b # 2n/2%, then we compute the values
of A} and pf from the formulas

Ap = )‘gb 1+ P 1 )\‘21;1, Py = 931;—11 : pggl' (3.13)
In the second case, we know the subword Zga—1(95—2)41 - - - T2a-1(2p—1) and the pair of words

/ / " "
Loa=1(2b—1)+1 - - - Toa-19p; Toa=1(2h—1)+1 - - Toa—1gp-

Then the word x/2a(b—1)+1 ... xhay is assumed equal to the concatenation of

/ / .
$2a—1(2b72)+1 e $2a—1(2b71) al’ld x2a_1(2b71)+1 e $2a_12b,

the word :c2a( .. xh,, is assumed equal to the concatenation of

b—1)+1
d " "
$2a—1(2b72)+1 e $2a—1(2b71) an x2a,1(2b71)+1 e $2a,12b.

Let us compute the values of A%, pi®, A/, pi/® from the formulas

la _ ya—1 ra—1 /a—1
X=X st N P = p% Py (3.14)
Ina a—1 //a 1 /1a, /1a—1 ’
N = A o5t N ot =0 e
In the third case, we know the pairs of the following words:
/ / " !
Loa—1(26—2)+1 * - - Ta—1(2p—1)> Loa—1(26—2)+1 * -+ L2a—1(2p—1)>
/ / " !
Loa=1(2b—1)+1 - - - Toa-19p; Toa=1(2h—1)+1 - - Toa—1gp
The word ), Bo(b—1)+1 " - .. Thay is assumed equal to the concatenation of
/ / / /
Toa—1(2p—2)11 - Taa—1(2p—1) ANd  Tha1(9p_1)41 -+ - Toa19p,
and the word an(b IEREE .. xhay is assumed equal to the concatenation of
1 /" /"
x2a71(2b—2)+1 <+ Loa—1(2p—1) and Loa—1(2p—1)+1 * - * Toa—19p:
Let us compute the values of N2, pi*, Ay, p,® from the formulas
la la 1 ra—1 la—1 ra—1 /a—1
Ao’ = Agp_1 T Pop_y Agy o= Py 1 Py (3.15)
a //a 1 11a—1 //a 1 1a 1a—1 1a—1 ’
At = Ay F oy Ay Py = Payg Py

This concludes the description of the recursive procedure.

Applying the procedure described above for a = log(2n), b =1 and the estimates A\*(log(2n), 1),
A~ (log(2n), 1), we obtain the word z; . .. x9,. (Here we assume that the prefix of zero length is known.)

Consider an example. Given the number N'(w’) = 12, let us find the word w’ of length n = 8. We
obtain ¢umax = 4n? = 64. We find A*(S, 1), A=(3,1) using formulas (3.4):

12-2193 11 12 - 2193
ME1) = g = e AT(B1) = e
196 14 14 14 - 9193 14-2193 4 1

We obtain AT(2,1), A=(2,1), and then A*(1,1), A=(1,1), AT(0,1), A=(0,1) using formulas (3.5):

. 12 2193 +1 122941 12297
A*(2,1) = iy 9193~ 14.997 A2 = 14-297 417
12. 297 1 12.29 41 12249
AT(1,1) = ¢F, 1 i : ALY =
14 . 997 14 - 249 14-249 +1
12-29 41 12.2% 41 12922
AT(0,1) = ¢y L ha , A(0,1) = —5r—
14 - 249 14 . 225 1422 +1°
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We obtain x’s for which inequalities (3.6) hold, i.e.,
AT(0,1) 2 q(x), AT(0,1) <g(x) +P(x),  Px)>0.
The unique x satisfying these inequalities is 0; we can see that
AT(0,1) > q(0) =0, A (0,1) < q(0) + P(0) =1, P(0)=1>0,
at the same time, for 1, these inequalities do not hold, because P(1) = 0. Therefore, 1 = 0.
We can find \? and p{ from formulas (2.8):

AN =4q(0)=0, pl=P0)=1
We obtain AT(0,2), A=(0,2) from formulas (3.9):

(12-2% +1)/(14-29) -0 12.2% +1 A (0,2) = 12-2%
1 S 14.2%5 7 1425 417

AT(0,2) = ¢y

We obtain x’s for which inequalities (3.6) hold, i.e.,
AT(0,2) > q(x|0),  A7(0,2) < q(x]0) + P(x]0),  P(x|0) > 0.

These inequalities hold for y = 1, because

XH0.2) > g(10) = 2. AT(0.2) <q(10) + PA0) =1, P(1jo) = 2 > 0.

14° 14
while the inequalities do not hold for x = 0, because
9
A(0,2) > (0[0) + P(0)0) = 7.
Therefore, x5 = 1.
We obtain A9 and p9, and then Al and p} by using formulas (2.8):
9 5 9 5
Ap=q(10) =7, pp=P0) =17, M =N =0 p=ps =g
We obtain AT (1,2), A (1, 2) from formulas (3.9):
320 41 3.2%
AT(1,2) = —F——— A(1,2) = ——.
We obtain AT (0, 3), A= (0, 3), from formulas (3.5):
3.926 4 1 3.2%
+ _os Tt - __9a
A7(0,3) = F 9% A7 (0,3) TR

We obtain x’s for which inequalities (3.6) hold, i.e.,
AT(0,3) = q(x|01),  AT(0,3) < q(x|01) + P(x[01),  P(x|01) > 0.
The inequalities hold for x = 0, because
AT(0,3) > (0[01) =0, A(0,3) < q(0]01) + P(0[01) =1,  P(0[01) =1 > 0;
the inequalities do not hold for x = 1, because P(1|01) = 0. Therefore, z3 = 0.
We obtain A9 and p§ from formulas (2.8):

A =q(0j01) =0, %= P(0J01) = 1.
We obtain AT (0,4), A=(0,4) from formulas (3.9):

3.2%6 41 3 .92

+ _ - _
A0 == A O = 5o
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We obtain x’s for which inequalities (3.6) hold, i.e.,
AT(0,4) > q(x|010), A7(0,4) < ¢(x|010) + P(x|010), P(x|010) > 0.
The inequalities hold for x = 0, because

3 3
AF(0,4) > q(0]010) = 0, A (0,4) < q(0]010) + P(0[010) = =, P(0]010) = = > 0;

the inequalities also hold for x = 1, because

2
AT(0,4) > ¢(1]010) = g A7(0,4) < q(1/010) + P(1010) =1, P(1]010) = = > 0.

Thus, 2/, = 0, ] = 1. We obtain A\, p?, X]°, p/{° from formulas (3.7):

MY = ¢(0[010) =0, p = P(0]010) = g N[0 = ¢(1]010) = g P = P(1)010) = =
We obtain AL, pit, AL, pit and then A2, p2, M2, p!f? from formulas (3.14):
M=o =2 =D =2
R R - =T

Let us use the comparisons (3.8). We see that the following two inequalities simultaneously hold:

ME+pP >A7(3,1), A2 <AT(E0).
Further, the equallty 1= (2n)/23 holds, i.e., b = 2n/2%. Therefore, x4 = ] = 1, and we successively
find the letters x5, ..., xzg. Then we find a letter x5 such that the conditions

q(x5/0101) =0,  P(25/0101) > 0
hold. These conditions hold for x5 = 0. We find an z¢ such that the conditions
q(26/01010) =0,  P(26]01010) > 0

hold. These conditions hold for zg = 0. We find an z7 such that the conditions

q(x7]010100) = 0, P(x7|010100) > 0
hold. These conditions hold for z7 = 1. We find a letter xg such that the conditions

q(250101001) =0,  P(25]0101001) > 0

hold. These conditions hold for zg = 1. Thus, the unknown word is 01010011.

Now let us transform the number N”(w") of the word w” from the binary system to the m-adic system
with the symbols of the alphabet A,, as digits of the system. The algorithm is based on the idea that,
given the binary representation of a number in an m-adic system, we can find the binary representations
for its halves:

N(x1...2p n
N(w129.. . 20 9) = WJ, N(zp/941---7p) = N(21...2,) modm /2
N(zyp...2p)9) "
N(xlxg...xn/4): (mn/4) / J’ N(xn/4+1...xn/2):N(xl...xn/g) modm /4’
N(z, ce ) "
N($n/2+1 .. .x3n/4) = (/5;3/4) J, N(.Tgn/4+1 .. CCn) = N(.TC”/2+1 .. CCn) mod m /4,
i (3.16)

etc. This action is repeated logn times; as a result, we obtain all the symbols of the number
w” = (x122 ... Ty)m, Which are replaced by the corresponding letters of the alphabet A,,. If the result
obtained has less than n symbols, the symbols corresponding to 0’s are put on the left. This results in
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the word w”. Since, in our example, m = 2, it follows that there is no need for such a transformation.
We obtain

N"(w") = (101)s, W’ = oo ooy . (3.17)

Now the 0’s in the word w’ are replaced by opening brackets of m types in the order given by the word w”.
The 1’s are replaced by closing brackets of m types so that the resulting word represents a correct
bracketing of m types. This method is uniquely determined by the types of opening brackets. In our
case, we obtain () [] ([]). The denumerated word w is obtained.

The properties of the denumeration algorithm are described by the following theorem.

Theorem 2. The memory capacity required for the denumeration of a word of length 2n is
O(nlog?n).

The denumeration complexity, i.e., the time needed to find one letter of the denumerated word
is equal to O(lognM (nlogn)/n), where M(nlogn) is the time needed for the multiplication or
the division of two words of length nlogn.

Corollary 3. [f the Schonhage—Strassen [ast multiplication algorithm with complexity
M(n) = nlognloglogn is used, then the denumeration rate is O(log® nloglogn).

Corollary 4. [f the Fiirer fast multiplication algorithm with complexity M(n) = nlogn2°Uee"m)
is used, then the denumeration rate is

O(log® n20Ues™ M)y,
In the computation of the word w’ from its number, the left half 1,9, ..., 2z, and the right half
ZTpt1,---, Ty are decoded independently and the same memory can be used. The same applies to the

computation of the word w” from its number. It is easy to see that the memory capacity used for the
encoding and decoding of the word w is asymptotically the same.

The total memory capacity needed to compute the word w from its number is O(nlogn).

The time needed to determine the word w from its number N(w) is comprised of the time needed
for determining N'(w') and N”(w") from N(w), of the time needed for determining the word w’
from N'(w’), and of the time needed for determining the word w” from N” (w").

Let us estimate the time needed to compute N'(w’) and N”(w") from N(w). To compute N”(w"),
it is required to perform one operation of division over the numbers N”(w”) and |Sa,|, i.e., over
numbers of lengths nlogm and 2n. This requires the time M(nlogm) = O(M(n)). To compute
N'(w') = N(w) — |San| - N”(w"), it is required to perform one operation of multiplication of numbers
of lengths nlogm = O(n) and 2n = O(n) and one operation of subtraction of numbers of lengths
n(logm) = O(n). To do this, the time O(M (n)) + O(n) = O(M (n)) is needed.

Let us estimate the time needed to compute the word w’ from N’(w'). To compute A*(a,b) and
A7 (a,b) from formulas (3.9), it is required to perform two operations of division, with the length of the
numerator and the denominator of the dividend not exceeding

293 [log qmax | + 4 = 2¢73(2logn + 2) + 4  bits
and, for the divisor,
2 Mlog qmax | = 2% (21logn 4 2)  bits.

The lengths of the dividend and the divisor are proportional to the lengths of the factors used to compute
A¢ from (2.8). Therefore, the computation time for A™(a,b) and A~ (a,b) will be proportional to the
computation time for Af in the enumeration. In addition, in the denumeration, just as in the enumeration,
the values of the quantities A\f and p{ or the pairs of quantities of the same length Aj*, Aj%, and p), p®
are computed in the same way.

In addition, in order to compare Aj* 4 pi* with AT (a + 1, (b — 1) /2) and \* with A\~ (a + 1, (b — 1)/2),
it is required to compare numbers whose lengths do not exceed 2%+2[log gmax | + 4. The comparison
time depends linearly on the length of the compared numbers, which is asymptotically less than the
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time needed for their multiplication and division. Therefore, the time needed for the operations of
computing the estimates A*(a,b), A7 (a,b), the quantities X{ and pf, (or the pairs A\, X/, pi?,
py®) and of comparing N + pi* with A*(a + 1, (b —1)/2) and A\}® with A~ (a + 1, (b — 1)/2), where
0 <a<log(2n),1 <b<2n/2% is proportional to the time of encoding w':

O(lognM (2nlogn)) = O(lognM (nlogn)).

Let us estimate the time needed to determine the letter z; or the pair «f, 2/, 1 <14 < 2n. To find one
letter or one pair of letters, we need at most two comparisons of words whose length does not exceed
22[10g Gmax | + 4 = 8logn + 10 bits. Hence we see that the total number of operations over the bit

words needed at this stage is O(nlogn).
Thus, we find that the time needed to find the word w’ from its number N (w') is

O(lognM (nlogn)) + O(nlogn) = O(lognM (nlogn)).

We can note that the time needed for the denumeration of the word w” is proportional to the time of
its enumeration, because the time M (n) needed for the multiplication of two words of length n is equal
to the time needed for the division of two words of length n, i.e., the time needed for the denumeration of
w” is O(lognM (n)).

Thus, the total time needed to find the word w from its number, is

O(M(n)) + O(lognM(nlogn)) + O(lognM(n)) = O(lognM (nlogn)).

The rate of the computation of the word w from its number, i.e., the time needed to compute one letters
of the word w from its number, is O(log nM (nlogn)/n). The theorem is proved. O
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